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INTRODUCTION 

1.1.   MACHINE LEARNING: A BRIEF INTRODUCTION 

Ever since computers were invented, we have wondered whether they might be 
made to learn. If we could understand how to program them to learn-to improve 
automatically with experience-the impact would be dramatic. 

• Imagine computers learning from medical records which treatments are most 
effective for new diseases 

• Houses learning from experience to optimize energy costs based on the 
particular usage patterns of their occupants. 

• Personal software assistants learning the evolving interests of their users in 
order to highlight especially relevant stories from the online morning newspaper 

A successful understanding of how to make computers learn, would open up many 
new uses of computers and new levels of competence and customization. Machine 
learning refers to a system that is capable of autonomous acquisition and integration of 
knowledge. This process of learning from experience through analytical observation 
results in continuously self-improved system to achieve high degree of efficiency. The 
direct implication of the machine learning is concerned about how to construct 
computer programs that automatically improve with experience without explicitly 
programming them. Tom Mitchell’s famous definition of machine learning is stated 
below: 

 
 

 

 

UNIT 
1 

A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E. 

        

             

               
 



 1.2   Introduction 

1.1.1.   Classes of Machine Learning Algorithms 
Machine learning is a set of methods that can automatically detect patterns in data in 

the form of text, images, numeric or videos and produces outputs, and then use the 
uncovered patterns to predict future data, or to take decisions with some degree of 
uncertainty. Machine learning is a subset of AI and can be seen as an implementation 
of AI. 

 
Fig. 1.1. Programming Culture 

Below are some classes of algorithms:  
• Generalized linear models (e.g., logistic regression)   

• Support vector machines (e.g., linear SVM, RBF-kernel SVM)  

• Artificial neural networks (e.g., multi-layer perceptions) 

• Tree - or rule-based models (e.g., decision trees) 
• Graphical models (e.g., Bayesian networks)   

• Ensembles (e.g., Random Forest) 

• Instance-based learners (e.g., K-nearest neighbors) 
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Mathematical Interpretations 

Before we know about the types we shall first understand the mathematical 
interpretation throughout his book. More formally, we define as the “hypothesis,” a 
function that we use to approximate some unknown function 

h(x) = y  

where x  is a vector of input features associated with a training example or dataset 
instance (for example, the pixel values of an image) and y is the outcome we want to 
predict (e.g., what class of object we see in an image). In other words, h(x) is a function 
that predicts y .  

Given a training set or Dataset 

D = {〈x [i], y [i]〉}, i  = 1, …. n  

We denote the ith training example as 〈x [i], y [i]〉. Please note that the superscript [i] is 
unrelated to exponentiation. Note that a critical assumption for (most) machine learning 
theory is that the training examples are i.i.d. (independent and identically distributed).  

In classification, we define the hypothesis function as 

h : x  → y  

Where x  ∈ RD and y  = {1, … k} with class labels k . In the special case of binary 
classification, we have y  = {0, 1} (or y  = {–1, 1}). 

And in regression, the task is to learn a function h: Rm → R Hypothesis (model) 
class H : the set of classifier functions we will use. Ideally, the true class distribution C 
can be represented by a function in H (exactly, or with a small error). 

x : A scalar denoting a single training example with 1 feature (e.g., the height of a 
person)  

X: A training example with m features (e.g,. with m = 3 we could represent the 
height, weight, and age of a person), represented as a column vector (i.e., a matrix with 
1 column, X ∈ Rm),  

X = A







x1

x2

 
xm

E  



 1.4   Introduction 

𝔛𝔛: Design matrix, 𝔛𝔛∈Rm×n, which stores n  training examples, where m is the number 
of features. 

𝔛𝔛 = A







XA

T
AEAE1 E

XA

T
AE2 E

 
XA

T
AEn E

 

Note that in order to distinguish the feature index and the training example index, 
we will use a square-bracket superscript notation to refer to the ith training example and 
a regular subscript notation to refer to the jth feature:  

𝔛𝔛 = A









x A

[1]
AEAE1 E    x A

[1]
AE2 E    x A

[1]
AEm E

x A

[2]
AE1 E    x A

[2]
AE1 E      x A

[2]
AEm E

            
 x A

[n]
AE1 E   x A

[n]
AE1 E    x A

[n]
AEm E

 

1.1.2.   Types of Machine Learning algorithms 

 
Fig. 1.2. Types of machine learning algorithms 

There are four types of machine learning algorithms: 

• Supervised learning 

• Unsupervised learning 

• Reinforcement learning 

• Semi supervised learning 
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SUPERVISED LEARNING 

Supervised learning is the subcategory of machine learning that focuses on learning 
a classification or regression model, that is, learning from labeled training data (i.e., 
inputs that also contain the desired outputs or targets; basically, “examples” of what we 
want to predict). 

 
Binary Classification (Either +/- or 1/0 or Black/White) 

Input representation: we need to decide what attributes (features) to use to describe 
the input patterns (examples, instances). This implies ignoring other attributes as 
irrelevant.  

 
The dashed-line indicates the functional form of the LINEAR REGRESSION 

model. CLASSIFICATION of the dataset by features e.g: Income and Savings in a 
home budget or a vehicle Mileage and Price incurred for a travel. 

 

 



 1.6   Introduction 

UNSUPERVISED LEARNING 

In contrast to supervised learning, unsupervised learning is a branch of machine 
learning that is concerned with unlabeled data. Common tasks in unsupervised learning 
are clustering analysis (assigning group memberships) and dimensionality reduction 
(compressing data onto a lower-dimensional subspace or manifold). 

 
CLUSTERING, where the dashed lines indicate potential group membership 

assignments of unlabeled data points. 

REINFORCEMENT LEARNING 

Reinforcement is the process of learning from rewards while performing a series of 
actions. In reinforcement learning, we do not tell the learner or agent, for example, a 
robot, which action to take but merely assign a reward to each action and/or the overall 
outcome. Instead of having “correct/false” label for each step, the learner must discover 
or learn a behavior that maximizes the reward for a series of actions. In that sense, it is 
not a supervised setting and somewhat related to unsupervised learning; however, 
reinforcement learning really is its own category of machine learning.  

Typical applications of reinforcement learning involve playing games (chess, Go, 
Atari video games) and some form of robots, e.g., drones, warehouse robots, and more 
recently self-driving cars. 
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SEMI - SUPERVISED LEARNING 

Roughly speaking, semi-supervised learning can be described as a mix between 
supervised and unsupervised learning. In semi-supervised learning tasks, some training 
examples contain outputs, but some do not. We then use the labeled training subset to 
label the unlabeled portion of the training set, which we then also utilize for model 
training. 

Applications of Machine Learning 

After the field of machine learning was “founded” more than a half a century ago, 
we can now find applications of machine learning in almost every aspect of hour life. 
Popular applications of machine learning include the following: 

• Email spam detection  

• Face detection and matching (e.g., iPhone X)  

• Web search (e.g., DuckDuckGo, Bing, Google)  

• Sports predictions  

• Post office (e.g., sorting letters by zip codes)  

• ATMs (e.g., reading checks)  

• Credit card fraud  

• Stock predictions  

• Smart assistants (e.g., Apple Siri, Amazon Alexa, . . . ) 

• Product recommendations (e.g., Netflix, Amazon)  

• Self-driving cars (e.g., Uber, Tesla)  

• Language translation (Google translate)  

• Sentiment analysis  

• Drug design  

• Medical diagnoses  

• ...  



 1.8   Introduction 

 
Fig. 1.3. Types and Application of Machine Learning Algorithms0F

* 

It is a good exercise to think about how machine learning could be applied in these 
problem areas or tasks listed above:  

• What is the desired outcome?  

• What could the dataset look like?  

• Is this a supervised or unsupervised problem, and what algorithms would you 
use?  

• How would you measure success?  

• What are potential challenges or pitfalls? 

1.2.   LEARNING PROBLEMS 

 

 

 

 

                                                 

 

A machine learning problem is said to be well-posed (well defined) if a 
unique solution exists, provided that the solution depends on the data / 
experience but it is not sensitive to (reasonably small) changes in the data / 
experience.  
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A problem is well defined if it possesses the following features: 

• class of tasks (T) 

• measure of performance to be improved (P) 

• source of experience (E) 

Examples of well posed problems:  

1) A robot driving learning problem 

 Task T: driving on public, 4-lane highway using vision sensors 

 Performance measure P: average distance travelled before an error 

 Training experience E: a sequence of images and steering commands recorded 
while observing a human driver 

2) Checkers learning problem: 

 Task T: playing checkers 

 Performance measure P: percentage of games won in the world tournament 

 Training experience E: games played against itself 

 
Fig. 1.4. Checker’s Game 

3) Spam Mail detection learning problem 

 Task T: To recognize and classify mails into 'spam' or 'not spam'. 

 Performance measure P: Total percentage of mails being correctly classified 
as 'spam' (or 'not spam') by the program. 

 Training experience E: A set of mails with given labels ('spam' / 'not spam'). 

4) A handwriting recognition learning problem: 
 Task T: recognizing and classifying handwritten words within images 

 Performance measure P: percent of words correctly classified 

 Training experience  E: a database of  handwritten words with given 
classifications 



 1.10   Introduction 

1.2.1.   Designing a Learning System 

The factors that are very much vital for designing a learning system are: 

• Choosing the training experience: determining the type of training   

• Choosing the Target Function: exact type of knowledge to be learned 

• Choosing a representation for the Target Function:  representation for this target 
knowledge 

• Choosing an approximation algorithm for the Target Function: learning 
mechanism / algorithm 

Choosing the training experience 
• Determining what type of training given to the system is a key factor in 

achieving desirable performance.  

• Choice must be made between direct and indirect feedback given to the learning 
system. This feedback is the knowledge gaining from current training step that 
is fed into the next step. 

• The learner or learning agent can decide on the next step either through 
knowledge gained from previous experience or make new choices to explore the 
space. This depends on the degree of learner’s control over the board.  

• The distribution of examples or data presented to the system to learn must also 
be studied before designing a learning system. 

Choosing a target function 
• Target function is determined based on the type of knowledge that is to be 

learned from the system. 

• The operational and non- operational profiles of the learning agent accumulated 
over time will form the target function. 

• These profiles are devised by evaluating the states and activities of the agent in 
its environment. 

• It is not always possible to form the exact target function. Hence an 
approximation is applied to target function which is termed as function 
approximation. 

Example: Consider the game of playing chess 
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 Task T: playing chess games 

 Performance measure P: percentage of games won against opponents 

 Training experience E: playing practice games against itself  

The target function of chess game is to find the next move of an entity from a given 
board position: Target function (V):  Board → Move 

Representation of target function 

The way how the perceived target function is expressed depends on the choice of the 
problem and developer. Common representations include: 

 Table with distinct entries for each state 

 Rules that match features of the state 

 Polynomial functions depicting the states 

 Artificial neural network 

The chosen target function V’ should be close to the original function V. In case of 
chess game, the target function V’ is: 

V’=w0 + w1x1+ w2x2+ w3x3+ w4x4+ w5x5+ w6x6 
x1: count of black pieces on the board 

x2: count of red pieces on the board 

x3: count of black kings on the board 

x4: count of red kings on the board 

x5: count of black pieces threatened by red 

x6: count of red pieces threatened by black 

The variables w0, w1,…, w6 are weights. 

Choosing a function approximation algorithm 

The training algorithm learns/approximate the coefficients w0, w1,…,w6 with the help 
of the training examples by estimating and adjusting these weights. The target function 
is coined based on the set of training examples that best describes the specific state b 
and the training value Vtrain(b) for b.  
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Fig. 1.5. Steps in designing a learning system  

Final design 

The final system design has the following four major components: 

 Performance System: To select its next move at each step is determined by the 
learned p evaluation function. The performance to improve as this evaluation 
function becomes increasingly 

 Critic: This takes as input the history or trace of the game and produces output 
a set of training examples of the target function.  

 Generalizer: This takes as input the training examples and produces an output 
hypothesis that is its estimate of the target function. It generalizes from the 
specific training examples, hypothesizing a general function that covers these 
examples and other cases beyond the training examples.  

 Experiment Generator: This takes as input the current hypothesis (currently 
learned function) and outputs a new problem (i.e., initial board state) for the 
Performance System to explore. Its role is to pick new practice problems that 
will maximize the learning rate of the overall system. 
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1.3.   PRESPECTIVES AND ISSUES IN MACHINE LEARNING 

Machine learning has many insights and viewpoints: 

• It is involved with larger space and capable of handling “Big data”. 

• It requires merger prior knowledge about the learning problem. 

• It looks on the underlying structures and patterns of the data. 

• The model can be trained on the available data and later can be generalized to 
work on unseen examples called test data. 

Issues in Machine Learning 

The following are some of the issues in machine learning: 

• What algorithms exist for learning general target functions from the specific 
training examples?  

• In what settings will particular algorithms converge to the desired function, 
given sufficient training data?  

• Which algorithms perform best for which types of problems and 
representations? 

• How much training data is sufficient? 

• What general bounds can be found to relate the confidence in learned 
hypotheses to the amount of training experience and the character of the 
learner's hypothesis space? 

• When and how can prior knowledge held by the learner guide the process of 
generalizing from examples?  

• Can prior knowledge be helpful even when it is only approximately correct? 

• What is the best strategy for choosing a useful next training experience, and 
how does the choice of this strategy alter the complexity of the learning 
problem? 

• What is the best way to reduce the learning task to one or more function 
approximation problems? P 

• What specific functions should the system attempt to learn?  

• Can this process itself be automated? 
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• How can the learner automatically alter its representation to improve its ability 
to represent and learn the target function? 

Apart from answering the above mentioned questions, there are other out of box 
issues like: 

 Ethics and legal issues 

 Lack of data. In other words it requires large amounts of hand-crafted, 
structured training data 

 Installation of sensors that would adversely affect the environment 

 Chances of misapplication 

 Degree of interpretability and interoperability 

 Each narrow application needs to be specially trained 

 Learning must generally be supervised: Training data must be tagged 

 Require lengthy offline/ batch training 

 Do not learn incrementally or interactively, in real-time 

 Poor transfer learning ability, reusability of modules, and integration 

 Systems are opaque, making them very hard to debug 

 Performance cannot be audited or guaranteed at the long run 

 They encode correlation, not causation or ontological relationships 

 Do not encode entities or spatial relationships between entities 

 Only handle very narrow aspects of natural language 

 Not well suited for high-level, symbolic reasoning or planning. 

1.4.   CONCEPT LEARNING 

 

 

 

 

 

Concept learning can be formulated as a problem of searching through a 
predefined space of potential hypotheses for the hypothesis. It can also be 
through as the process of evolving a Boolean or approximated Boolean 
valued function from the trained input and output of the problems. 
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This is the first step towards building machine learning algorithms.  It is acquiring 
the definition of a general category from given sample positive and negative training 
examples of the category. The hypothesis or search space has a general-to-specific 
ordering of hypotheses, and the search can be efficiently organized by taking advantage 
of a naturally occurring structure or patterns over the data in the hypothesis space. 

Example: 

Consider the example task of learning the target concept "Days on which Aldo 
enjoys his favorite water sport” 

Example Sky Air 
Temp Humidity Wind Water Forecast Enjoy 

Sport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

Table: Positive and negative training examples for the target concept Enjoy Sport. 

The task is to learn to predict the value of Enjoy Sport for an arbitrary day, based on 
the values of its other attributes? 

What hypothesis representation is provided to the learner? 

• Let’s consider a simple representation in which each hypothesis consists of a 
conjunction of constraints on the instance attributes. 

• Let each hypothesis be a vector of six constraints, specifying the values of the 
six attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. 

For each attribute, the hypothesis will either 

• Indicate by a "?' that any value is acceptable for this attribute, 

• Specify a single required value (e.g., Warm) for the attribute, or 

• Indicate by a “Φ” that no value is acceptable 

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a 
positive example (h(x) = 1). 
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The hypothesis that PERSON enjoys his favorite sport only on cold days with high 
humidity is represented by the expression 

(?, Cold, High, ?, ?, ?) 

The most general hypothesis-that every day is a positive example-is represented by 

(?, ?, ?, ?, ?, ?) 

The most specific possible hypothesis-that no day is a positive example-is 
represented by 

(Φ, Φ, Φ, Φ, Φ, Φ) 

Notation 
• The set of items over which the concept is defined is called the set of instances, 

which is denoted by x  

Example: x is the set of all possible days, each represented by the attributes: Sky, 
AirTemp, Humidity, Wind, Water, and Forecast 

• The concept or function to be learned is called the target concept, which is 
denoted by c. c can be any Boolean valued function defined over the instances x  

c: x  → {0, 1} 

Example: The target concept corresponds to the value of the attribute EnjoySport 

(i.e., c(x) = 1 if EnjoySport = Yes, and c(x) = 0 if EnjoySport = No). 

• Instances for which c(x) = 1 are called positive examples, or members of the 
target concept. 

• Instances for which c(x) = 0 are called negative examples, or non-members of 
the target concept. 

• The ordered pair (x, c(x)) to describe the training example consisting of the 
instance x and its target concept value c(x). 

• D to denote the set of available training examples 

• The symbol H to denote the set of all possible hypotheses that the learner may 
consider regarding the identity of the target concept. Each hypothesis h in 

represents a Boolean- valued function defined over x . 

The goal of the learner is to find a hypothesis h such that h(x) = c(x) for all x in x. 
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• Given: 

• Instances x: Possible days, each described by the attributes 

• Sky (with possible values Sunny, Cloudy, and Rainy), 

• AirTemp(with values Warm and Cold), 

• Humidity (with values Normal and High), 

• Wind (with values Strong and Weak), 

• Water (with values Warm and Cool), 

• Forecast (with values Same and Change). 

• Hypotheses H: Each hypothesis is described by a conjunction of constraints 
on the attributes Sky, AirTemp, Humidity, Wind, Water, and Forecast. The 
constraints may be "?" (any value is acceptable), “Φ” (no value is 
acceptable), or a specific value. 

• Target concept c: EnjoySport: x  → {0, l} 

• Training examples D: Positive and negative examples of the target 
function 

• Determine: A hypothesis h in H such that h(x) = c(x) for all x in x . 

General-to-Specific Ordering of Hypotheses 

Consider the two hypotheses 
h1 = (Sunny, ?, ?, Strong, ?, ?) 

h2 = (Sunny, ?, ?, ?, ?, ?) 

• Consider the sets of instances that are classified positive by h1 and by h2. 

• h22 imposes fewer constraints on the instance, it classifies more instances as 
positive. So, any instance classified positive by h1 will also be classified 
positive by h2. Therefore, h2 is more general than h1. 

Given hypotheses hj and hk, hj, is more-general-than or-equal-to hk if and only if any 
instance that satisfies hk also satisfies hj. 

Definition: Let hj and hk be Boolean-valued functions defined over X. Then hj is 
more general- than-or-equal-to hk (written hj ≥g hk) if and only if 

(∀x  ∈ X) [hk (x) = 1 → (hj (x) = 1)] 
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• In the figure above, the box on the left represents the set X of all instances, the 

box on the right the set H of all hypotheses. 

• Each hypothesis corresponds to some subset of X-the subset of instances that it 
classifies positive. 

• The arrows connecting hypotheses represent the more-general-than relation, 
with the arrow pointing toward the less general hypothesis. 

• Note the subset of instances characterized by h2 subsumes the subset 
characterized by h1, hence h2 is more-general-than h1. 

Inductive Learning Hypothesis 

This involves the process of learning by example where a system tries to induce a 
general rule from a set of observed instances. This is different from conceptual learning 
where the learning task is to determine a hypothesis h identical to the target concept 
cover the entire set of instances X, the only information available about c is its value 
over the training examples. 

Inductive learning algorithms guarantee that the output hypothesis fits the target 
concept over the training data. The best hypothesis regarding unseen instances is the 
hypothesis that best fits the observed training data. This is inductive learning. 
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1.5.   VERSION SPACES AND CANDIDATE ELIMINATIONS 

1.5.1.   Version Space 

 
 

 

 

 

To some class of tasks T and performance measure P, if its performance at tasks in 

T, as measured by P, improves with experience E. 

T, as measured by P, improves with experience E. 

T, as measured by P, improves with experience E. 

The subset of all hypotheses is called the version space with respect to the 
hypothesis space H and the training examples D, because it contains all probable 
versions of the target concept. Given a set of training examples, any concept consistent 
with them must include every positive and every negative instance. 

Consider a binary classification problem. Let D be a set of training examples and H 
a hypothesis space for the problem. The version space for the problem with respect to 
the set D and the space H is the set of hypotheses from H consistent with D; that is, it is 
the set  

VSD, H = {h ∈ H: h(x) = c(x) ∀ x  ∈ D 

 

Any hypothesis found to approximate the target function well over a 
sufficiently large set of training examples will also approximate the target 
function well over other unobserved examples. A computer program is said 
to learn from experience E with respect. 

              
  

         

         

         
A version space is a hierarchical representation of knowledge that 

enables you to keep track of all the useful information supplied by a 
sequence of learning examples without remembering any of the examples. 
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Selecting a hypothesis from a hypothesis space (from Entire hypotheses, H called 

General (G) to Particular hypothesis h named Specific (S)). 

Assume we are given a dataset with 4 features and 3 class labels, the class label (y  ∈ 
{Setosa, Versicolor, Virginica}). Also, assume all features are binary. Given 4 features 
with binary values (True, False), we have 24 = 16 different feature combinations (see 
table below). Now, of the 16 rules, we have three classes to consider (Setosa, 
Versicolor, Virginica). Hence, we have 316 = 43, 046, 721 potential combinations of 16 
rules that we can evaluate (this is the size hypothesis space, H = 43, 046, 721)!  

 
Example of decision rules for the Iris flower data dataset. 

Version space method involves identifying all concepts consistent with a set of 
training examples. This can be implemented incrementally, one example at a time. 
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Fig. 1.6. Example Version Space 

Example:  
Consider the set of observations of a variable ‘x’ with the associated ‘class’ 

labels  

 
From Figure above we can easily see that the hypothesis space with respect 

this dataset D and hypothesis space H is as given below:  
Version space, VSD,H = {hm:17 < m ≤ 20}  

1.5.2.   Representation of version space (LIST-THEN-ELIMINATE) 

• Simple way to represent the version space is to list all the members in the 
version space. 

• An algorithm to do so is termed as LIST-THEN-ELIMINATE learning 
algorithm. 

x 27 15 23 20 25 17 12 30 6 10 

Class 1 0 1 1 1 0 0 1 0 0 

• This algorithm initializes the version space to contain the entire hypothesis H. It 
then eliminated all the inconsistent hypothesis by comparing it with the given 
training examples. 
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• Iteratively, this procedure will shrink the version space and will finally remain 
with one single hypothesis that is consistent with the training examples. This is 
the target hypothesis or target concept. 

• When there are no sufficient training examples, then this algorithm will return 
either entire hypothesis space or set or hypothesis as target.  

• The merit of this method is that the algorithm is guaranteed to converge to a 
result. 

• The drawbacks includes: exhaustive searching of all the hypothesis and can be 
applied to a finite space. 

 
Fig. 1.7. The problem A is enumerating many hypothesis in the levels B and C.  

The LIST-THEN-ELIMINATE algorithm, returns D as target hypothesis 

Algorithm for LIST-THEN-ELIMINATE 
1. Version_Space ← list containing every hypothesis in H 
2. For each training example, (x, C(x)) 
           Remove from Version_Space any hypothesis h, where h(c) ≠c(x) 
3. Return the list of hypothesis in Version_Space. 
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1.5.3.   Candidate Elimination Algorithm 

• This algorithm returns the consistent hypothesis for the given training examples. 
• The candidate elimination algorithm incrementally builds the version space 

given a hypothesis space H and a set E of examples.  
• The examples are added one by one; each example possibly shrinks the version 

space by removing the hypotheses that are inconsistent with the example. 
• The candidate elimination algorithm does this by updating the general and 

specific boundary for each new example. 
• It begins by initializing the version space to the set of all hypotheses in H. This 

process is otherwise termed initializing the G (General Boundary) boundary 
set that contains the most general hypothesis in H. 

G0 ← {< ?, ?, ?, ?, ?, ?>} 
• On the other hand, a specific boundary set (S) is initialized to contain the most 

specific or least general hypothesis. Initially S will look like: 
S0 ← {<φ, φ, φ, φ, φ, φ>} 

• These two boundary sets delimit the entire hypothesis space, because all the 
hypothesis listed in H will be more general that G0 but more specific that S0.  

• For every training example, S and G set will be generalised and specialized, 
thus eliminating the inconsistent hypothesis from H. 

• Finally, the set H will contain only the hypothesis that are consistent with 
training examples.  

Algorithm for Candidate_Elimination 
Initialize G to the set of maximally general hypotheses in H 
Initialize S to the set of maximally specific hypotheses in H 
For each training example d, do 
If d is a positive example 
Remove from G any hypothesis inconsistent with d , 
For each hypothesis s in S that is not consistent with d ,- 
Remove s from S 
Add to S all minimal generalizations h of s such that 
h is consistent with d, and some member of G is more general  
                                                      than h      
Remove from S any hypothesis that is more general than another  
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                                                      hypothesis in S 
If d is a negative example 
Remove from S any hypothesis inconsistent with d 
For each hypothesis g in G that is not consistent with d 
Remove g from G 
Add to G all minimal specializations h of g such that 
h is consistent with d, and some member of S is more specific than h 
Remove from G any hypothesis that is less general than another  
                                           hypothesis in G 

• The version space learned by the Candidate Elimination Algorithm will 
converge toward the hypothesis that correctly describes the target concept 
provided:  

(1) There are no errors in the training examples 

(2) There is some hypothesis in H that correctly describes the target concept. 

• Convergence can be speeded up by presenting the data in a strategic order.  

• The best examples are those that satisfy exactly half of the hypotheses in the 
current version space. 

• Version-Spaces can be used to assign certainty scores to the classification of 
new examples 

Example of Candidate elimination algorithm 

To learn the concept of “Japanese Economy Car” from the features < Country of 
Origin, Manufacturer, Color, Decade, Type > 
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1. Positive Example 1: <Japan, Honda, Blue, 1980, Economy> 
Initialize G to a singleton set that includes everything.  

G = { (?, ?, ?, ?, ?) } 

Initialize S to a singleton set that includes the first positive example. 

S = {(Japan, Honda, Blue, 1980, Economy) } 

2. Negative Example 2: <Japan, Toyota, Green, 1970, Sports> 

Specialize G to exclude the negative example. 

G = { (?, Honda, ?, ?, ?), (?, ?, Blue, ?, ?), (?, ?, ?, 1980, ?), (?, ?, ?, ?, Economy) } S 
= { (Japan, Honda, Blue, 1980, Economy) } 

3. Positive Example 3: <Japan, Toyota, Blue, 1990, Economy> 

Prune G to exclude descriptions inconsistent with the positive example. 

G = { (?, ?, Blue, ?, ?), (?, ?, ?, ?, Economy) } 

Generalize S to include the positive example. 

S = { (Japan, ?, Blue, ?, Economy) } 

4. Negative Example <USA, Chrysler, Red,1980, Economy> 
Specialize G to exclude the negative example (but stay consistent with S)  

G = { (?, ?, Blue, ?, ?), (Japan, ?, ?, ?, Economy) } 

S = { (Japan, ?, Blue, ?, Economy) } 

5. Positive Example: <Japan, Honda, White, 1980, Economy> 

Prune G to exclude descriptions inconsistent with positive example. 

G = { (Japan, ?, ?, ?, Economy) } 

Generalize S to include positive example. 

S = { (Japan, ?, ?, ?, Economy) } 

6. Positive Example: <Japan, Toyota, Green, 1980, Economy> 
New example is consistent with version-space, so no change is made. 

G = { (Japan, ?, ?, ?, Economy) } 

S = { (Japan, ?, ?, ?, Economy) } 
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7. Negative Example: <Japan, Honda, Red, 1990, Economy> 
Example is inconsistent with the version-space. 

G cannot be specialized. 

S cannot be generalized. 

The version space collapses.  No conjunctive hypothesis is consistent with the data 
set. 

1.6.   INDUCTIVE BIAS 

 

 

 
• Inductive reasoning is the process of learning general principles on the basis of 

specific instances. 

• This is done by all the machine learning algorithms to produce predictions for 
any unseen test instance based on the knowledge it had obtained from the finite 
number of training instances.  

• Inductive bias describes the tendency for a system to prefer a certain set of 
generalizations over others that are equally consistent with the observed data. 

Steps in Inductive Learning: 

Inducing a general function from training examples:  

1. Construct hypothesis from the training example. 

2. A hypothesis is consistent if it agrees with all training examples. 

3. A hypothesis said to generalize well if it correctly predicts the value of y for 
novel example. 

This is inductive learning. 

Lesson on Machine Learning interpretability 
• Rashomon effect: The multiplicity of good models. Often we have 

multiple good models that fit the data well. If we have different models 
that all fit the data well, which one should we pick?  

Inductive bias is the set of assumptions a learner uses to predict results 
given inputs it has not yet encountered. 
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• Occam’s razor: While we prefer favoring simple models, there is usually 
a conflict between accuracy and simplicity to varying degree. 

• Bellman and the “curse of dimensionality” Usually, having more data 
is con- sidered a good thing (i.e., more information). However, more data 
can be harmful to a model and make it more prone to over fitting (fitting 
the training data too closely and not generalizing well to new data that 
was not seen during training; fitting noise). Note that the curse of 
dimensionality refers to an increasing number of feature variables given a 
fixed number of training examples. Some models have smart 
workarounds for dealing with large feature sets. E.g., Breiman’s random 
forest algorithm, which partitions the feature space to fit individual 
decision trees that are then later joined to a decision tree ensemble (the 
particular algorithm is called random forest). 

Also note that there’s a “No Free Lunch” theorem for machine learning, 
meaning that there’s no single best algorithm that works well across different 
problem domains.  

1.6.1.   Biased Hypothesis Space 

• The version space of a problem contains all possible hypothesis. Only the 
hypothesis that agree with the training examples will qualify as target 
hypothesis. 

• The target hypothesis is the generalization of the learning process. 

• When a novel, unknown training example is presented to the target hypothesis, 
it should give right predictions. 

• But when a more specific, negative example is presented to the target 
hypothesis, it cannot predict the result, since it has not been trained over that 
kind of examples. This phenomenon is called biased hypothesis. 

• This necessitates the formulation of more expressive hypothesis. 

• A biased hypothesis leads to biased learner. 

1.6.2.   An Unbiased Learner 

• The obvious solution to the problem of assuring that the target concept is in the 
hypothesis space H is to provide a hypothesis space capable of representing 
every teachable concept 
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• The target hypothesis should be capable of representing every possible subset of 
the instances X. The set of all subsets of a set X is called the powerset of X. 

• The Enjoysport learning task can be reformulated in an unbiased way by 
defining a new hypothesis space H' that can represent every subset of instances. 

• Let H' correspond to the power set of X. This can be formed by including 
arbitrary disjunctions, conjunctions, and negations of the hypotheses. 

• For example, the target concept "Sky = Sunny or Sky = Cloudy" could then be 
described as: (Sunny, ?, ?, ?, ?, ?) v (Cloudy, ?, ?, ?, ?, ?). 

• In this way, the more learning can happen. But the intuitive problem is the 
learning algorithm cannot learn beyond the examples or in other words it cannot 
generalise beyond the observed examples. 

• The S boundary (Specific boundary) of the version space will contain the 
hypothesis which is the disjunction of the positive examples. 

• The G boundary (General boundary) will consist of the hypothesis that rules out 
only the observed negative examples. 

• The problem here is that with this very expressive hypothesis representation, the 
S boundary will always be simply the disjunction of the observed positive 
examples, while the G boundary will always be the negated disjunction of the 
observed negative examples.  

• Therefore, the only examples that will be unambiguously classified by S and G 
are the observed training examples themselves.  

• Inorder to converge to a single, final target concept, we will have to present 
every single instance in X as a training example, which is very difficult. 

1.6.3.   The Futility of Bias-Free Learning 

• The important inference obtained is that learner that makes no a priori 
assumptions regarding the identity of the target concept has no rational basis for 
classifying any unseen instances.  

• The Candidate Learning can generalize beyond training examples since it was 
biased by the implicit assumption that the target concept could be represented 
by a conjunction of attribute values. 
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• In cases where this assumption is correct its classification of new instances will 
also be correct. If this assumption is incorrect, the algorithms will rnisclassify 
at least some instances from X. 

• The key idea of inductive learning is that the policy by which the learner 
generalizes beyond the observed training data, to infer the classification of new 
instances.  

Let L(xi, Dc) denote the classification (e.g., positive or negative) that L assigns to xi 
after learning from the training data Dc. We can describe this inductive inference step 
performed by L as follows  

(Dc ∧ xi) > L (xi, Dc) 

• In general, the optimal query strategy for a concept learner is to generate 
instances that satisfy exactly half the hypotheses in the current version space. 

• When this is possible, the size of the version space is reduced by half with each 
new example, and the correct target concept can therefore be found with only 
log2 |VersionSpace| experiments. 

• Even though the learned version space still contains multiple hypotheses, 
indicating that the target concept has not yet been fully learned, it is possible to 
classify certain examples with the same degree of confidence as if the target 
concept had been uniquely identified. 

 
• Instance A was is classified as a positive instance by every hypothesis in the 

current version space. Because the hypotheses in the version space unanimously 
agree that this is a positive instance, the learner can classify instance A as 
positive with the same confidence it would have if it had already converged to 
the single, correct target concept. 

• Regardless of which hypothesis in the version space is eventually found to be 
the correct target concept, it is already clear that it will classify instance A as a 
positive example. 
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• We need not enumerate every hypothesis in the version space in order to test 
whether each classifies the instance as positive. 

– This condition will be met if and only if the instance satisfies every member 
of S. 

– The reason is that every other hypothesis in the version space is at least as 
general as some member of S. 

– If the new instance satisfies all members of S itmust also satisfy each of 
these more general hypotheses. 

• Instance B is classified as a negative instance by every hypothesis in the version 
space. 

• This instance can therefore be safely classified as negative, given the partially 
learned concept. 

• An efficient test for this condition is that the instance satisfies none of the 
members of G. 

• Half of the version space hypotheses classify instance C as positive and half 
classify it as negative. Thus, the learner cannot classify this example with 
confidence until further training examples are available. 

• Instance D is classified as positive by two of the version space hypotheses and 
negative by the other four hypotheses. In this case we have less confidence in 
the classification than in the unambiguous cases of instances A and B. 

• Still, the vote is in favor of a negative classification, and one approach we could 
take would be to output the majority vote, perhaps with a confidence rating 
indicating how close the vote was. 

• From these theory we infer the formal definition of inductive bias as: 
Consider a concept learning algorithm L for the set of instances X. Let c be an 
arbitrary concept defined over X, and let Dc = {〈x, c(x)〉} be an arbitrary set of 
training examples of c. Let L(xi, Dc) denote the classification assigned to the 
instance xi by L after training on the data Dc. The inductive bias of L is any 
minimal set of assertions B such that for any target concept c and corresponding 
training examples Dc the following formula holds 

(∀x ∈ X) [B ∧ Dc ∧ xi) ┠  L((xi, Dc))] 
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• Reformulating the candidate elimination algorithm: new instances are classified 
only in the case where all members of the current version space agree on the 
classification. Otherwise, the system refuses to classify the new instance. 

Inductive Bias: the target concept can be represented in its hypothesis space. 

1.7.   DECISION TREE LEARNING 

It is one of the widely adopted inductive learning method. It is a method for 
approximating discrete-valued functions that is robust to noisy data and capable of 
learning disjunctive expressions. Learned trees can also be represented as sets of if-then 
rules to improve human readability.  

1.7.1.   Representing Decision Trees 

 

 

 

 

 

 
• Decision trees classify instances by sorting them down the tree from the root to 

some leaf node, which provides the classification of the instance.  
• Each node in the tree specifies a test of some attribute of the instance, and each 

branch descending from that node corresponds to one of the possible values for 
this attribute. 

• An instance is classified by starting at the root node of the tree, testing the 
attribute specified by this node, then moving down the tree branch 
corresponding to the value of the attribute in the given example. 

• Decision trees can be constructed for both classification as well as regression 
based problems. 

• A decision tree is drawn upside down with its root at the top.  

• The condition/internal node is the location where the tree splits into branches/ 
edges. 

• The end of the branch that doesn’t split anymore is the decision/leaf. 

A decision tree consists of: 
 Nodes: test for the value of a certain attribute 
 Edges: correspond to the outcome of a test connect to the next 

node or leaf 
 Leaves: terminal node that predict the outcome 

  

        

         

         



 1.32   Introduction 

• Recursive Binary Splitting: All the features are considered and different split 
points are tried and tested using a cost function. The split with the best cost (or 
lowest cost) is selected. This is the strategy followed in construction of decision 
tree. 

 
Fig. 1.8. A decision tree for finding the fitness of a person 

• The following are the rules that could be inferred from decision tree given in 
Fig 1.8: 

 <Age<30 ∧ Eats lots of pizzas> is unfit 

 <Age<30∧Do not Eats lots of pizzas> is fit 

 <Age>30 ∧Exercises in the morning> is fit 

 <Age>30 ∧Do not exercise in the morning > is unfit 

• Decision trees will be a good option if the following conditions are met: 

 Instances are represented by attribute-value pairs 

 Disjunctive descriptions may be required.  

 The training data may contain errors 

 The training data may contain missing attribute values. 

1.7.2.   Decision tree algorithm 

The ID3 (Iterative Dichotomiser 3) is a primitive decision tree algorithm. It deploys 
enhanced greedy search algorithm that implement heuristic function. The probability is 
used as comparison metric. This tree do not support backtracking. 
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• The construction of tree starts with deciding which attribute should be tested at 
the root.  

• Each instance attribute is evaluated using a statistical test to determine how well 
it alone classifies the training examples. The best attribute is selected and used 
as the test at the root node of the tree. 

• A descendant of the root node is then created for each possible value of this 
attribute, and the training examples are sorted to the appropriate descendant 
node. 

• The entire process is then repeated using the training examples associated with 
each descendant node to select the best attribute to test at that point in the tree. 

• This forms a greedy search for an acceptable decision tree, in which the 
algorithm never backtracks to reconsider earlier choices.  

Algorithm of ID3 Decision Tree  

ID3(Examples, Target attribute, Attributes) 
// Examples are the training examples. 
// Target attribute is the attribute whose value is to be predicted by the tree.  
//Attributes is a list of other attributes that may be tested by the learned decision  
Tree. 
//Returns a decision tree that correctly classifies the given Examples. 
Create a Root node for the tree 
If all Examples are positive, Return the single-node tree Root, with label = + 
If all Examples are negative, Return the single-node tree Root, with label = - 
If Attributes is empty, Return the single-node tree Root, with label = most common 
value of Target attribute in Examples 
Otherwise Begin 
   At the attribute from Attributes that best classifies Examples 
   The decision attribute for Root←  A 
    For each possible value, vi, of A, 
Add a new tree branch below Root, corresponding to the test A = vi 

Let Examples vibe the subset of Examples that have value vi for A 
If Examples vi is empty 
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Then below this new branch add a leaf node with label = most common 
value of Target attribute in Examples 
Else below this new branch add the subtree 
ID3(Examplesvi, Targetattribute, Attributes – {A})) 
End 
Return Root 

Choosing best classifier 
ID3 algorithm for generating decision trees, uses the notion of information gain to 

choose the best classifier. Information gain is defined in terms of entropy, the 
fundamental quantity in information theory. 

 

 

 

 

 

Entropy characterizes the purity or impurity of an arbitrary collection of examples. 
Given a collection H, containing positive and negative examples of some target 
concept, the entropy (H(x)) of S relative to this boolean classification is: 

H(x) = – p  + log2 p+ –  p – log2 p– 

Where p+ is the proportion of positive examples in H and p– is the proportion of 
negative examples in H.  

Entropy = A ∑

i  = 1
c EA– pi * log2 (pi) 

Here pi is the fraction of examples in the given class. Entropy controls how a 
Decision Tree decides to split the data. It actually effects how a decision tree draws its 
boundaries. 

Information gain measures how well a given attribute separates the 
training examples according to their target classification. ID3 uses this 
information gain measure to select among the candidate attributes at each 
step while growing the tree. 
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Fig. 1.9. Entropy function for Boolean classification (p-positive examples, q-negative 

examples 

Information gain and entropy 

• The information gain is based on the decrease in entropy after a data-set is split 
on an attribute. 

• Information gain measures how much information a feature gives us about the 
class. Information gain is the main key that is used by Decision Tree Algorithms 
to construct a Decision Tree.  

• Decision Trees algorithm will always tries to maximize Information gain. 

• An attribute with highest Information gain will tested/split first. 

• The information gain (G) of an attribute y, relative to a collection of examples x 
is: 

G(x , y) = H(x) – A ∑
i∈vaule(y)E

A A

∆yi
∆y E

A H(yi) 

Where H(yi) is the entropy.  

Example: 

Use ID3 algorithm to construct a decision tree for the data in Table  
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Solution: Note that, in the given data, there are four features but only two 

class labels (or, target variables), namely, “yes” and “no”.  
Step 1: We first create a root node for the tree.  
Step 2: Note that not all examples are positive (class label “yes”) and not all 

examples are negative (class label “no”). Also the number of features is not zero.  
Step 3: We have to decide which feature is to be placed at the root node. For 

this, we have to calculate the information gains corresponding to each of the four 
features. The computations are shown below.  
(i) Calculation of Entropy (S) 

Entropy (S) = −pyes log2(pyes) − pno log2(pno)  
         = −(9/14) × log2 (9/14) − (5/14) × log2 (5/14)  

(ii) Calculation of Gain (S, outlook) 
The values of the attribute “outlook” are “sunny”, “overcast” and “rain”. We 

have to calculate Entropy ( ) for v = sunny, v = overcast and v = rain.  
Entropy (Ssunny)    = − (3/5) × log2 (3/5) − (2/5) × log2 (2/5) = 0.9710  
Entropy (Sovercast) = − (4/4) × log2 (4/4) = 0   
Entropy (Srain)      = − (3/5) × log2 (3/5) − (2/5) × log2 (2/5) = 0.9710  
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Gain (S, outlook) = Entropy (S) – A
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        = 0.9405 – (5/14) × 0.9710  

        = (4/14) × 0 – (5/14) × 0.9710  

        = 0.2469 

(iii) Calculation of Gain (S, temperature) 
The values of the attribute “temperature” are “hot”, “mild” and “cool”. We 

have to calculate Entropy (Sv) for v = hot, v = mild and v = cool.  
Entropy (Shot) = −(2/4) × log2 (2/4) − (2/4) × log2 (2/4) = 1.0000  
Entropy (Smild) = −(4/6) × log2 (4/6) − (2/6) × log2 (2/6) = 0.9186  
Entropy (Scool) = −(3/4) × log2 (3/4) − (1/4) × log2 (1/4) = 0.8113  

Gain (S, temperature) = Entropy (S) A
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    = 0.9405 – (4/14) × 1.0000 – (6/14) × 0.9186 – (4/14) × 0.8113  

    = 0.0293 

(iv) Calculation of Gain (S, humidity) and Gain (S, wind) 
The following information gains can be calculated in a similar way:  

Gain (S, humidity) = 0.151 Gain (S, wind) = 0.048 

Step 4: We find the highest information gain which is the maximum among 
Gain(S, outlook), Gain(S, temperature), Gain(S, humidity) and Gain(S, wind). 
Therefore, we have:  

highest information gain = max{0.2469, 0.0293, 0.151, 0.048}  
     = 0.2469 

This corresponds to the feature “outlook”. Therefore, we place “outlook” at 
the root node. We now split the root node into three branches according to the 
values of the feature “outlook” as in Figure below 
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Step 5: Let S(1) = Soutlook=sunny. We have ∣S(1)∣ = 5. The examples in S(1)are 

shown in figure below 

 
Fig. 1.10. Training examples with outlook = “sunny” 

Gain (S(1), temperature) = Entropy (S) – A
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     = [−(2/5) log2(2/5) − (3/5) log2(3/5)]  − (2/5)  
         × [−(2/2) log(2/2))] − (2/5) × [−(1/2) log(1/2)  
         − (1/2) log2(1/2)] − (1/5) × [−(1/1) log(1/1)] 

     = 0.5709 

Similarly we find for humidity and wind 

Gain (S(1), humidity) = Entropy (S) – A
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                   = [−(2/5) log2(2/5) − (3/5) log2(3/5)] − (3/5)  
     × [−(3/3) log(3/3))] 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     = 0.9709   

Gain (S(1), wind) = Entropy (S) – A
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     = [−(2/5) log2(2/5) − (3/5) log2(3/5)] – (3/5)  
     × [−(2/3) log(2/3) − (1/3) log2(1/3))]  

    = 0.0110  
The maximum of Gain(S(1), temp), Gain(S(1), hum) and Gain(S(1), wind) is 

Gain(S(1), hum). Hence we place “humidity” at Node 1 and split this node into two 
branches according to the values of the feature “humidity” to get the tree in  

 
Step 6: It Step 6: can be seen that all the examples in the data set 

corresponding to Node 4 have the same class label “no” and all the examples 
corresponding to Node 5 have the same class label “yes”. So we represent Node 
4 as a leaf node with value “no” and Node 5 as a leaf node with value “yes”. 
Similarly, all the examples corresponding to Node 2 have the same class label 
“yes”. So we convert Node 2 as a leaf node with value “yes. Finally, let  
S(2) = Soutlook = rain. The highest information gain for this data set is  
Gain(S (2) , humidity). The branches resulting from splitting this node 
corresponding to the values “high” and “normal” of “humidity” lead to leaf 
nodes with class labels “no” and “yes”. With these changes, we get the tree in 
Figure below.  
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1.7.3.   Heuristic Space Search in Decision Tree Learning 

• ID3 can be characterized as searching a space of hypotheses for one that fits the 
training examples. 

• The hypothesis space searched by ID3 is the set of possible decision trees. 

• ID3 performs a simple-to complex, hill-climbing search through this hypothesis 
space, beginning with the empty tree, then considering progressively more 
elaborate hypotheses in search of a decision tree that correctly classifies the 
training data 

 
Fig. 1.11. Hypothesis space search by ID3. ID3 searches through the space of possible 
decision trees from simplest to increasingly complex, guided by the information gain 

heuristic 

By viewing ID3 in terms of its search space and search strategy, there are some 
insight into its capabilities and limitations as discussed below: 

1. ID3's hypothesis space of all decision trees is a complete space of finite 
discrete-valued functions, relative to the available attributes. Because every 
finite discrete-valued function can be represented by some decision tree 
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♦ ID3 avoids one of the major risks of methods that search incomplete 
hypothesis spaces: that the hypothesis space might not contain the target 
function. 

2. ID3 maintains only a single current hypothesis as it searches through the space 
of decision trees. 

a. For example, with the earlier version space candidate elimination method, 
which maintains the set of all hypotheses consistent with the available 
training examples. 

By determining only a single hypothesis, ID3 loses the capabilities that follow 
from explicitly representing all consistent hypotheses. 

b. For example, it does not have the ability to determine how many alternative 
decision trees are consistent with the available training data, or to pose new 
instance queries that optimally resolve among these competing hypotheses 

3. ID3 in its pure form performs no backtracking in its search. Once it selects an 
attribute to test at a particular level in the tree, it never backtracks to reconsider 
this choice. 

♦ In the case of ID3, a locally optimal solution corresponds to the decision 
tree it selects along the single search path it explores. However, this locally 
optimal solution may be less desirable than trees that would have been 
encountered along a different branch of the search. 

4. ID3 uses all training examples at each step in the search to make statistically 
based decisions regarding how to refine its current hypothesis. 
♦ One advantage of using statistical properties of all the examples is that the 

resulting search is much less sensitive to errors in individual training 
examples. 

♦ ID3 can be easily extended to handle noisy training data by modifying its 
termination criterion to accept hypotheses that imperfectly fit the training 
data. 

Alternative Measures for Selecting Attributes 

♦ The problem is if attributes with many values, Gain will select it ? 

♦ Example: consider the attribute Date, which has a very large number of 
possible values. (e.g., March 4, 1979). 
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♦ If this attribute is added to the PlayTennis data, it would have the highest 
information gain of any of the attributes. This is because Date alone 
perfectly predicts the target attribute over the training data. Thus, it would 
be selected as the decision attribute for the root node of the tree and lead to 
a tree of depth one, which perfectly classifies the training data. 

♦ This decision tree with root node Date is not a useful predictor because it 
perfectly separates the training data, but poorly predict on subsequent 
examples. 

One Approach: Use GainRatio instead of Gain 
The gain ratio measure penalizes attributes by incorporating a split information, that 

is sensitive to how broadly and uniformly the attribute splits the data 

 Gain Ratio (S, A) ≡ A

Gain (S, A)
ESplit Information (S, A) E

 

 Split Information (S, A) ≡ – A ∑

i  = 1
C EAA

|Si|
|S| E

A log2 A

|Si|
|S| E

 

Where, Si is subset of S, for which attribute A has value vi 

Glossary: 
Machine learning borrows concepts from many other fields and redefines what has 

been known in other fields under different names. Below is a small glossary of machine 
learning- specific terms along with some key concepts to help navigate the machine 
learning literature.  

• Training example D: A row in the table representing the dataset. Synonymous to 
an observation, training record, training instance, training sample (in some 
contexts, sample refers to a collection of training examples). 

• Training: model fitting, for parametric models similar to parameter estimation. 
• Feature, x: a column in the table representing the dataset. Synonymous to 

predictor, variable, input, attribute. 
• Target, y: Synonymous to outcome, output, response variable, dependent 

variable, (class) label, ground truth. 

• Predicted output, Aŷ E

A: use this to distinguish from targets; here, means output from 
the model. 
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• Loss function: Often used synonymously with cost function; sometimes also 
called error function. In some contexts the loss for a single data point, whereas 
the cost function refers to the overall (average or summed) loss over the entire 
dataset. 

• Hypothesis, H: A hypothesis is a certain function that we believe (or hope) is 
similar to the true function, the target function that we want to model. In context 
of spam classification, it would be a classification rule we came up with that 
allows us to separate spam from non-spam emails. 

• Model: In the machine learning field, the terms hypothesis and model are often 
used interchangeably. In other sciences, they can have different meanings: A 
hypothesis could be the “educated guess” by the scientist, and the model would 
be the manifestation of this guess to test this hypothesis. 

• Learning algorithm: Again, our goal is to find or approximate the target 
function, and the learning algorithm is a set of instructions that tries to model 
the target function using our training dataset. A learning algorithm comes with a 
hypothesis space, the set of possible hypotheses it explores to model the 
unknown target function by formulating the final hypothesis. 

• Classifier: A classifier is a special case of a hypothesis (nowadays, often learned 
by a machine learning algorithm). A classifier is a hypothesis or discrete-valued 
function that is used to assign (categorical) class labels to particular data points. 
In an email classification example, this classifier could be a hypothesis for 
labeling emails as spam or non-spam. Yet, a hypothesis must not necessarily be 
synonymous to the term classifier. In a different application, our hypothesis 
could be a function for mapping study time and educational backgrounds of 
students to their future, continuous-valued, SAT scores – a continuous target 
variable, suited for regression analysis. 

• Hyper parameters: Hyper parameters are the tuning parameters of a machine 
learning algorithm – for example, the regularization strength of an L2 penalty in 
the mean squared error cost function of linear regression, or a value for setting 
the maximum depth of a decision tree. In contrast, model parameters are the 
parameters that a learning algorithm fits to the training data – the parameters of 
the model itself. For example, the weight coefficients (or slope) of a linear 
regression line and its bias (or y-axis intercept) term are model parameters. 



 

NEURAL NETWORKS AND GENETIC 
ALGORITHMS 

2.1.   INTRODUCTION NERUAL NETWORKS 

Bio inspired computing is gaining popularity because of its ability to solve many 
difficult problems.  Neural network is one of the prominent brain child of bio inspired 
algorithms. Neural networks are designed with an aim of artificially imitating the 
working of human brain to solve the real world problems. They are otherwise known an 
Artificial Neural Network (ANN).  

• ANN is artificial representation of human brain that attempts to simulate the 
learning process. 

• ANNs are constructed by interconnecting artificial neurons that shares the 
properties of biological neurons. 

 

 

 

Definitions of neural network 
• A neural network is a system composed of many simple processing elements 

working in parallel whose function is determined by network structure, 
connection strengths, and the processing performed at computing elements or 
nodes. 

• A neural network is a massively parallel distributed processor that has a natural 
propensity for storing experiential knowledge and making it available for use. It 
resembles the brain in two respects:  

UNIT 
2 

ANN is an interconnected group of artificial neurons that acts as a 
mathematical or computational model for information processing. 
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− Knowledge is acquired by the network through a learning process. 

− Interneuron connection strengths known as synaptic weights are used to 
store the knowledge 

• A neural network is a circuit composed of a very large number of simple 
processing elements that are neuraly based. Each element operates only on local 
information asynchronously. 

• Artificial neural systems, or neural networks, are physical cellular systems 
which can acquire, store and utilize experiential knowledge. 

• ANNs are an attempt to imitate the highly parallel processing capabilities of 
brain in handling distributed representations. 

• Neural networks are a form of multiprocessor systems with the following 
properties: 

− Simple processing elements 

− High degree of interconnection 

− Simple messaging formats 

− Adaptive interaction between the elements. 

 
Fig. 2.1. Application areas of ANN 

Advantages of Neural networks 
The following are some of the advantages of neural networks: 
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 Massive parallelism 

 Distributed representation 

 Highly distributed computation 

 Excellent Learning ability 

 More generalized 

 Highly adaptive nature 

 Inherent contextual information processing 

 Fault tolerance 

 Low energy consumption 

2.2.   REPRESENTATION OF NEURAL NETWORKS  

 
Fig. 2.2. Representation of neural network 

There are many versions of neural network representation. The most common one is 
Multi Layer Perceptron (MLP) model, which has three layers. Each layer takes input 
from the previous layer and summed with the weights before passing it to next layer. 
They following are the layers: 

• Input Layer: The initial data that is to be processed by the nodes or neurons. 
Each node will be connected to every other node in the next layer.  

• Hidden Layer: Computational layer that lies in between input and output layer 
neurons. 

• Output Layer: The final layer that is responsible for producing output. 
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Mathematical Representation of Neural Networks 

 
Fig. 2.3. Mathematical model of neural network 

The input units (x1, x2, …, xm) are connected with next layer by multiplying the 
weight vectors (ω1, ω2, …, ωm ) and then summing them. The resultant is added with the 
bias value. Bias value is added to make the neurons adapt to realistic situations. 
Activation function is applied over this value which will yield the output value (y).  

Y = activation_function (∑m
i = 0 xi ωi + b)  

Y = activation (∑(weight * input) + bias)  

Role of activation functions 

• Activation functions are complicated and form Non-linear complex functional 
mappings between the inputs and response variable. 

• They introduce non-linear properties to neural network. 

• Their main purpose is to convert input signal of a node in an ANN to an output 
signal. That output signal now is used as input in the next layer in the stack.  

• Specifically in ANN we do the sum of products of inputs(X) and their 
corresponding Weights (W) and apply a Activation function f(x) to it to get the 
output of that layer and feed it as an input to the next layer. 

• They basically decide whether a neuron should be activated or not. Whether the 
information that the neuron is receiving is relevant for the given information or 
should it be ignored. 



Machine Learning Techniques  2.5  

• The activation function is the non-linear transformation done over the input 
signal. This transformed output is then send to the next layer of neurons as 
input. 

• It is used to determine the output of neural network like yes or no. It maps the 
resulting values in between 0 to 1 or -1 to 1 etc. (depending upon the function). 

2.3.   PROBLEMS SOLVED BY NEURAL NETWORKS 

The ability of humans to understand the learned target function is not important. The 
weights learned by neural networks are often difficult for humans to interpret. Learned 
neural networks are less easily communicated to humans than learned rules. The 
BACKPROPAGATION algorithm is the most commonly used ANN learning 
technique. It is appropriate for problems with the following characteristics: 

• Instances are represented by many attribute-value pairs: The target function to 
be learned is defined over instances that can be described by a vector of 
predefined features. 

• The target function output may be discrete-valued, real-valued, or a vector of 
several real- or discrete-valued attributes.  

• The training examples may contain errors.  

• ANN learning methods are quite robust to noise in the training data. 

• Long training times are acceptable.  

• Fast evaluation of the learned target function may be required.  

2.4.   PERCEPTRONS 

The perceptron was first proposed by Rosenblatt (1958) is a simple neuron that is 
used to classify its input into one of two categories. A perceptron is a single processing 
unit of a neural network. This is a good learning tool. This model follows perceptron 
training rule and it could operate well with linearly separable patterns. 

 

 

 

Linear separability is the separation of the input space into regions is based 
on whether the network response is positive or negative. 
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A perceptron uses a step function that returns +1 if the weighted sum of its input (v) 
is greater than or equal to 0 else it returns -1. 

 Φ(v) = 








 
+ 1 if v ≥

– 1 if v  < ) 

Working of perceptrons 

 
Representation of a biological neuron 

• In the biological neurons, the dendrite receives the electrical signals from the 
axons of other neurons. The signals are modulated in various amounts before 
further transmission. 

• The signals are transmitted to other neurons only if the modulated signal 
exceeds the threshold value. The same principle is applied in perceptron model. 

• In the perceptron, the input received is always represented as numerical values. 
These values are multiplied by the weights.  

• The total strength of the input is calculated as the weighted sum of the inputs. A 
step function (activation function) is applied to determine its output.  

• This output is fed to the other perceptrons if it exceeds the threshold value. 
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Fig. 2.4. Perceptron Model (In this model x0 = 1, which is the bias) 

• Linear perceptron: computes a linear function y  = ∑D
d = 1 wd xd + w0 ∈ R of an 

input vector x ∈ RD with weight vector w ∈ RD (or y  = wTx with w ∈ RD + 1 and 
we augment x with a 0th component of value 1). To have K outputs: y  = wx with 

W ∈ RK×(D + 1) 

 
• For classification, we can use: 

– Two classes: y  = σ (wTx) = 
1

1 + exp(– wTx) ∈ (0, 1) (logistic). 

– K > 2 classes: yk = 
exp(wT

kx)
∑K

j = 1 exp(wT
j x) ∈ (0, 1), k = 1, …. K with ∑  yk = 1 

(soft max) 

Training a perceptron  

K
K = 1

• Apply stochastic gradient descent: to minimize the error E(w) = ∑K
K = 1 e(W; Xn, 

yn), repeatedly update the weights w ← w + ∆ with ∆w = – η∇e (W; Xn, yn) and 
n = 1,....,N  (one epoch).  

Regression by least-squares error:  
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E(W; Xn, yn) = (yn – wTxn)2 ⇒ ∆W = η(yn – wTxn)xn 

Classification by maximum likelihood, or equivalently cross-entropy:  

 For two classes: yn ∈ {0, 1} and e(W; Xn, yn) = – yn logθn – (1 – yn) log (1 – θn) 

where, θn = σ(wTxn) ⇒ ∆w = η(yn – θn)xn 

 For K > 2 classes: yn ∈ {0, 1}k coded as 1-of-K and  e(W; Xn, yn)  = – ∑K
K = 1 ykn 

logθkn 

where, θkn = 
Ex)

∑ A

K
AEj = 1 E exp(wA

T
AEj Ex) E ⇒ ∆wkn = η(ykn – θkn) xdn for d  = 0 … D and  

k = 0, … K 

The original perceptron algorithm was a variation of stochastic gradient descent. For 

linearly separable problems, it converges in a finite (possibly large) number of 

iterations. For problems that are not linearly separable problems, it never converges. 

2.4.1.   Perceptrons over Boolean functions  

exp(wT
k

• The ability of perceptrons to represent AND, OR, NAND, and NOR is 
important because every boolean function can be represented by some network 
of interconnected units based on these primitives. 

• Every boolean function can be represented by some network of perceptrons only 
two levels deep, in which the inputs are fed to multiple units, and the outputs of 
these units are then input to a second, final stage.  

• One way is to represent the boolean function in disjunctive normal form. The 
input to an AND perceptron can be negated simply by changing the sign of the 
corresponding input weight. 

• Because networks of threshold units can represent a rich variety of functions 
and because single units alone cannot, we will generally be interested in 
learning multilayer networks of threshold units. 
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• Boolean function: {0, 1}D →{0, 1}. Maps a vector of D bits to a single bit (truth 
value). 

• Can be seen as a binary classification problem where the input instances are 
binary vectors. 

• Since a perceptron can learn linearly separable problems, it can learn AND, OR 
but not XOR. 

 
Construction of AND 

 
Fig. 2.5. AND function using perceptron 

• The AND function has two inputs (I1 and I2) with one output (O) and two 
hidden units (X1 and X2). 

• The following equalities could be inferred from the above table: 
i) W1(0) + W2(0) < θ 

ii) W1(0) + W2(1) < θ 

iii) W1(1) + W2(0) < θ 

iv) W1(1) + W2(1) > θ 

• Many solutions could be framed for the above equations. One possible solution 
is fixing the threshold value as 1.5. 

• If w1=1 and w2=1, then the equations can be written as: 
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a) (0) + (1) (0) < 1.5 

b) (1) (0) + (1) (1) < 1.5 

c) (1) (1) + (1) (0) < 1.5 

d) (1) (1) + (1) (1) > 1.5 

• The output of the network is determined by calculating a weighted sum of its 
two input and comparing this value with a threshold value. 

• If the net input (net) is greater than the threshold value, then the output is 1, else 
it is 0.  

• To summarize, the output of the network is calculated as: 
 Net = W1⋅I1 + W2⋅I2 

• If Net > threshold value, then output = 1, else output = 0. 

2.4.2.   Training rules in Perceptron: Perceptron Rule 

• Training in perceptron occurs by adjusting the weights.  

• The precise learning problem is to determine a weight vector that causes the 
perceptron to produce the correct ± 1 output for each of the given training 
examples. 

• Several algorithms are known to solve this learning problem. The most common 
ones are: the perceptron rule and the delta rule, since they are guaranteed to 
converge. 

• These rules form the basis for learning networks of many units. 

• One way to learn an acceptable weight vector is to begin with random weights, 
then iteratively apply the perceptron to each training example, modifying the 
perceptron weights whenever it misclassifies an example. This process is 
repeated, iterating through the training examples as many times as needed until 
the perceptron classifies all training examples correctly.  

• Weights are modified at each step according to the perceptron training rule, 
which revises the weight wi associated with input xi according to the rule. 

 Wi ← wi + ∆wi 
Where, wi  ← wi + ∆wi 
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• Here, t is the target output for the current training example, o is the output 
generated by the perceptron, and q is a positive constant called the learning rate. 

• The role of the learning rate is to moderate the degrees to which weights are 
changed at each step.  

• It is usually set to some small value (e.g., 0.1) and is sometimes made to decay 
as the number of weight-tuning iterations increases. 

• The convergence is not assured for non-linearly separable problems. 

2.4.3.   Training rules in Perceptron: Gradient Descent and Delta Rule 

• The perceptron rule fails to converge if the examples are not linearly separable. 
Delta rule is designed to overcome this difficulty.  

• If the training examples are not linearly separable, the delta rule converges 
toward a best-fit approximation to the target concept. 

• The key idea behind the delta rule is to use gradient descent to search the 
hypothesis space of possible weight vectors to find the weights that best fit the 
training examples. 

• Gradient descent searches the hypothesis space of possible weight vectors to 
find the best one. The search hypothesis space contains many different types of 
continuously parameterized hypotheses. 

 

 

 

 

• To find a local minimum of a function using gradient descent, one takes steps 
proportional to the negative of the gradient (or of the approximate gradient) of 
the function from the current point. 

“Gradient descent is an iterative algorithm, that starts from a random 
point on a function and travels down its slope in steps until it reaches the 
lowest point. 
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Fig. 2.6. Steps taken in gradient descent 
• The delta training rule is best understood by considering the task of training an 

unthresholded perceptron which is a linear unit for which the output o is given 
by: 

 0( A x→E

A) = A w→E

A ⋅ A x→E 

• A linear unit corresponds to the first stage of a perceptron, without the 
threshold. 

• In order to derive a weight learning rule for linear units, specify a measure for 
the training error of a hypothesis (weight vector), relative to the training 
examples. 

 E( A w→E

A) = A

1
2E

A ∑d ∈ D (td – od)2 

Where D is the set of training examples, td is the target output (actual output) for 
training exampled, and od (predicted output) is the output of the linear unit for 
training example d.  

• E( A w→E

A) is half the squared difference between the target output and the output, 
summed over all training examples. This is the deviation between actual and 
target output. In other words it is the error in prediction. 

• The best machine learning model will try to minimise this error value through 
continuous learning.  

2.4.4.    Visualizing the hypothesis space 

• The hypothesis space of gradient descent is best represented using contour plot. 

• Contour plots are topographical maps drawn from three-dimensional data. 
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• One variable is represented on the horizontal axis and a second variable is 
represented on the vertical axis. The third variable is represented by a Colour 
gradient and isolines (lines of constant value). 

• These plots are helpful in searching for minimums and maximum values in a set 
of trivariate data. 

• Let w0, w1 be the plane that represent the entire hypothesis space. Start with 
arbitrary initial weight vector, then repeatedly modify it in small steps in the 
direction that produces the steepest descent. 

 

Fig. 2.7. Visualization of gradient descent using Contour plot 

• The direction of steepest descent is along the error surface. Gradient descent 
algorithm will try to fix the values of w1 and w2 (refer Fig 2.7) at which the 
error E[w] is minimum. 

• Derivative of E with respect to each component of the vector A w→E

A is expressed as 
∇E(A w→E

A). 

 ∇E(A w→E

A) = A


 

AE

 
EA

∂E
∂w0 E

A, A

∂E
∂w1 E

A, …. , A

∂E
∂wn E

AA


 
AE

 
 

• The gradient specifies the direction that produces the steepest increase in E.  
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• (E∇ A w→E

A) is a vector, whose components are the partial derivatives of E with 
respect to each of the wi.  

• When interpreted as a vector in weight space, the gradient specifies the direction 
that produces the steepest increase in E. The negative of this vector therefore 
gives the direction of steepest decrease. 

• Since the gradient specifies the direction of steepest increase of E, the training 
Rule for gradient descent is 

 A w→E

A ← A w→E

A + ∆A w→E

A 

Where 

 ∆A w→E

A = – η∇E(A w→E

A) 

• η is the learning rate, a positive constant, which determines the step size in the 
gradient descent search.  

• The negative sign is present because the weight vector in the direction that 
decreases E. 

• The gradient descent rule states 

 Awi
→E

A ← Awi
→E

A + ∆Awi
→E 

 ∆Awi
→E

A = – η∇E(Awi
→E

A) 

• The vector of 
iw

E
∂
∂  derivatives that form the gradient can be obtained by 

partially differentiating E with respect to w. 

• Calculation of gradient is given by: 

 A

∂E
∂wi E

A = A

∂
∂wi E

A A

1
2E

A A ∑
d∈DE

A(td – od)2 

  = A

1
2E

A A ∑
d∈DE

A A

∂
∂wi E

A (td – od)2 

  = A

1
2E

A A ∑
d∈DE

A 2(td – od) A

∂
∂wi E

A (td – od) 

  = A ∑
d∈DE

A (td – od) A

∂
∂wi E

A (td – A w→E

A ⋅ Axd
→E

A) 
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  = A ∑
d∈DE

A (td – od) (– xid) 

 ∆wi =  η∑d∈D (td – od) xid 

Algorithm for Gradient Descent 

Gradient_Descent( training example, η) 

Each training example is a pair of the form ( A x→E

A, t), where A x→E

A is the vector of input 
values, and 

T is the target output value. η is the learning rate.  
Initialize each wi to some small random value  

Until the termination condition is met, Do 
Initialize each ∆ wi to zero. 

For each (A x→E

A, t) in training examples, Do 

Input the instance A x→E

A to the unit and compute the output o 
For each linear unit weight wi, Do 

 – ∆wi  ←  ∆wi + η(t  – o) xi 

For each linear unit weight wi, Do 

 wi  ← wi + ∆wi 

Limitations of gradient descent 
• Converging to a local minimum can sometimes be quite slow 

• No guarantee to find the global minimum 

• Huge computations for large amount of data 

2.4.5.   Stochastic Gradient Descent (SGD) 

• This is an improvisation done over gradient descent to reduce the computations. 

• SGD or incremental gradient descent randomly picks one data point from the 
whole data set at each iteration to reduce the computations enormously. 

• SGD approximates the gradient descent search by updating weights 
incrementally, following the calculation of the error for each individual 
example. 
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• The modified training rule of SGD is: 
 ∆wi  ← η(t  – o) xi 

• This provides a reasonable approximation to descending the gradient with 
respect to our original error function 

• Also, by making the η sufficiently small, it can be made to approximate rule 
gradient descent arbitrarily closely. 

• The distinct error function is: 

 Ed(A w→E

A) = A

1
2E

A (td – od)2 

Algorithm for Stochastic Gradient Descent 
Stochastic Gradient Descent (training example, η) 

Each training example is a pair of the form ( A x→E

A, t), where A x→E

A is the vector of input 
values, and 

t is the target output value. η is the learning rate.  
Initialize each wi to some small random value  

Until the termination condition is met, Do 
          Initialize each ∆wi to zero. 

          For each (A x→ E

A, t) in training examples, Do 

                     Input the instance A x→E

A to the unit and compute the output o 
                      For each linear unit weight wi, Do 

 wi ← wi + η(t  – o) xi 

Differences between Gradient Descent and Stochastic Gradient Descent 
Gradient Descent Stochastic Gradient Descent 

The error is summed over all the 
examples before updating the weights. 

The weights are updated after each 
training example. 

This requires more computations. Relatively fewer computations are 
needed. 

Summing over multiple examples requires 
larger step size per weight update. 

This requires lower step size per weight 
update. 
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Relatively more prone to be stuck with 
local minima. 

Do not get stuck with local minima. 

  

Limitations of SGD 
The SGD performs frequent updates with high variance that causes the function to 

fluctuate more. 

2.5.    MULTILAYER NETWORKS AND THE BACKPROPAGATION ALGORITHM 

Single perceptrons can only express linear decision surfaces. But a multilayer 
network learned by the Back propagation algorithm is capable of expressing a rich 
variety of nonlinear decisions. 

2.5.1.   Multi Layer Perceptron (MLP) 

The MultiLayer Perceptron (MLPs) classifies datasets which are not linearly 
separable. This is made possible by their more robust and complex architecture. 

• Multilayer perceptron (or feed forward neural net): nested sequence of 
perceptrons, with an input layer, an output layer and zero or more hidden layers:  

 

• It can represent nonlinear discriminants (for classification) or functions (for 
regression).  

• Architecture of the MLP: each layer has several units. Each unit h takes as input 
the output z of the previous layer’s units and applies to it a linear function wA

T
AEh Ez 

(using a weight vector wh, including a bias term) followed by a nonlinearity s(t): 
output of unit h = s (wA

T
AEh Ez). 

 A

dσ(y)
Edy E

A = σ(y)⋅(1 – σ(y))  
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• The function is monotonic but function’s derivative is not.  

 
Fig. 2.8. Sigmoid Threshold Unit 

• The sigmoid unit first computes a linear combination of its inputs, then applies a 
threshold to the result. The threshold output is a continuous function of its input.  

• Sigmoid unit computes it output o by 

 O = σ (A w→E

A⋅A x→E

A)  

 σ(y) = A

1
1 + e–yE

A  

• The other name for sigmoid function is squashing function, since it maps a 
very large input domain to a small range of outputs. 

• To summarize, Sigmoid function: 
 Logistic function 
 Output ranges between 0 to 1 
 Increasing with its input (monotonic) 
 Its derivative is easily expressed in terms of its output (differentiable) 

• Typical nonlinearity functions s(t) used: 

– Logistic function: s(t) = A

1
1 + e–tE

A (or softmax) 
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– Hyperbolic tangent:  s(t) = tan h t = A

et – e–t

et + e–tE

A . 

– Rectified linear unit (Re LU):  s(t) = max (0,t). 

– Step function: s(t) = 0 if t < 0, else 1. 

– Identity function: s(t) = t  (no nonlinearity). 

The output layer uses as nonlinearity: 

– For regression: the identity (so the outputs can take any real value). 

– For classification: the sigmoid and a single unit (K = 2 classes), or the soft 
max and K units (K > 2 classes). 

All nonlinearities (sigmoid, etc.) have a similar universal approximation ability, but 
some (e.g. Re LU) are easier to optimize than others. 

• If all the layers are linear s(t) = t for all units in each layer) the MLP is overall a 
linear function, which is not useful, so we must have some nonlinear layers. 

• Ex: an MLP with one hidden layer having H units, with inputs x ∈ RD and 
outputs y ∈ RD′, where the hidden units are sigmoidal and the output units are 
linear: 

 

MLP as a universal approximator 

• A Boolean function can always be written as a disjunction of conjunctions, and 
this can be implemented by an MLP with one hidden layer. Each conjunction 
(AND) is implemented by one hidden unit. Ex: x1 XOR x2 = (x1 AND Ax2

–E

A) OR 
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( Ax1
–E

A AND x2) The disjunction (OR) is implemented by the output unit. This 
existence proof generates very large MLPs (up to 2D hidden units with D 
inputs). Practically, MLPs are much smaller.  

• Universal approximation: any continuous function (satisfying mild assumptions) 
from RD to RD′ can be approximated by an MLP with a single hidden layer with 
an error as small as desired (by using succiently many hidden units). 

2.5.2.   Back propagation Algorithm 

This algorithm is used to compute the gradients in the delta rule, to minimize the 
squared error between the actual and the predicted values. It learns the weights for a 
multilayer network, given a network with a fixed set of units and interconnections. The 
MLPs have multiple output units rather than single unit, hence they can have multiple 
local minima. The gradient descent is guaranteed only to converge toward some local 
minimum. So redefine E(error) to sum the errors over the entire network output units. 

 E( A w→E

A) = A

1
2E

A ∑d∈D ∑k∈outputs⋅(tkd – okd)2  

tkd and okd target and output values respectively for the kth output and training 

example d.  

Stochastic gradient descent version of the Back propagation for Feed forward 

networks containing two layers of sigmoid units. 

//Back propagation(training _example, η, ηin, ηout, ηhidden) 

//The input from unit i into unit j is denoted xij, and the weight from unit i to unit j is 
denoted 

//wij, Each training example is a pair of the form ( A x→ E

A, A t→E

A) which is the vector of 
network input 

//values, and is the vector of target network output values.  
Create a feed-forward network with input (ηin), output (ηout), hidden (ηhidden) units 

Initialize all network weights to small random number (between – 0.05 and 0.05). 

Until the termination condition is met, Do 

For each (A x→E

A,A t→E

A) in training_examples, Do 
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Propagate the input forward through the network: 

1. input the instance A x→E

A to the network and compute the output ou of every unit  

 Propagate the errors backward through the network: 

2. For each network output unit k, calculate its error term 
 δ(k) ← ok (1 – ok) (tk – ok)  

3. For each hidden unit h, calculate its error term 
 δh = oh (1 – oh) ∑k ∈ outputs δkWkh 

4. Update each network weight 
 Wji ← Wji + ∆Wji,  

Where  ∆Wji = ηδj xj  

 

Fig. 2.9. Back propagation 

• ηn denotes the error term associated with unit n which is the difference between 
actual and predicted output. 

• The neural network described in back propagation algorithm starts with the 
desired number of hidden and output units and initializing all network weights 
to small random values. 

• With this fixed network structure, the main loop of the algorithm then 
repeatedly iterates over the training examples.  
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• For each training example, it applies the network to the example, calculates the 
error of the network output for this example, computes the gradient with respect 
to the error on this example, then updates all weights in the network.  

• This gradient descent step is iterated until the network performs acceptably 
well. 

• The error term δk is computer for each unit k, by (tk – ok) which is the difference 
between target and output values. 

• This difference is then multiplied by ok (1 – ok), which is the derivative of 
sigmoid squashing function. 

• Error estimation for hidden unit:  

 No target values are directly available to indicate the error of hidden units’ 
values 

 The error terms for hidden unit h is calculated by summing the errors δk for 
each output unit influenced by h, weighting each of the δk by wkh which is 
the weight from hidden unit h to output unit k. 

• Updating weights incrementally, following the presentation of each training 
example. This corresponds to a stochastic approximation to gradient descent 

• To obtain the true gradient of E, one would sum the δj xji values over all training 
examples before altering weight values. 

• This is iterated thousands of times in a typical application. 

• The following are the termination condition can be used to halt the procedure 

 Choose to halt after certain iteration 

 Error on training examples falls below some threshold 

 Error on a separate validation set of examples meets some criterion  

2.5.3.   Adding Momentum 

• The Back propagation algorithm only requires that the weight changes be 
proportional to the derivative of the error.  

• The larger the learning rate the larger the weight changes on each epoch, and the 
quicker the network learns.  
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• However, the size of the learning rate can also influence whether the network 
achieves a stable solution.  

• If the learning rate gets too large, then the weight changes no longer 
approximate a gradient descent procedure. Oscillation of the weights is often the 
result. 

• So it’s natural to use the largest learning rate possible without triggering 
oscillation. This would offer the most rapid learning and the least amount of 
time spent waiting at the computer for the network to train.  

• One method that has been proposed is a slight modification of the 
backpropagation algorithm so that it includes a momentum term. 

• The concept of momentum is that previous changes in the weights should 
influence the current direction of movement in weight space. This concept is 
implemented by the revised weight-update rule: 

 ∆Wji (n) = ηδj xji + α∆Wji (n – 1)  

• With momentum, once the weights start moving in a particular direction in 
weight space, they tend to continue moving in that direction. 

• α∆Wji (n – 1) is the momentum term that the gradient descent search trajectory 
is analogous to that of a ball rolling down the error surface.  

• The effect of α is to add momentum that tends to keep the ball rolling in the 
same direction from one iteration to the next.  

• This can sometimes have the effect of keeping the ball rolling through small 
local minima in the error surface, or along flat regions in the surface where the 
ball would stop if there were no momentum.  

• It also has the effect of gradually increasing the step size of the search in regions 
where the gradient is unchanging, thereby speeding convergence. 
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Learning rate in SGD without Momentum Learning rate in SGD with 

momentum 

Fig. 2.10. Role of momentum in boosting the learning rate 

2.5.4.   Derivation of Back propagation rule 

The stochastic gradient descent involves iterating through the training examples one 
at a time, for each training example d descending the gradient of the error Ed with 
respect to this single example. 

 ∆Wji = – η A

∂Ed

∂wji E

A  

 Ed(ϖ) = A

1
2E

A ∑k∈outputs (tk – ok)  

The weighted sum of inputs for unit j is given by 
 Netj = ∑i Wji xji  

σ is the sigmoidfunction. 

 A

∂Ed

∂wji E

A =  A

∂Ed

∂netjE

A A

∂netj

∂wji E

A = A

∂Ed

∂netjE

A xji  

Chaining Rule for Output Unit Weights 
Just as wji can influence the rest of the network only through netj, neti can influence 

the network only through oj. 

 A

∂Ed

∂netjE

A = A

∂Ed

∂oj E

A A

∂oj

∂netjE

A  

To begin, consider just the first term in Equation 

 A

∂Ed

∂oj E

A = A

∂
∂oj E

A A

1
2E

A ∑k∈outputs (tk – ok)2  
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  = A

∂
∂oj E

A A

1
2E

A (tj – oj)  

  = A

1
2E

A 2(tj – oj) A

∂(tj – oj)
E∂oj E

A  

  =  (tj – oj)  
Consider the second term, 

 A

∂oj

∂netjE

A = A

∂σ(netj)
E∂netjE

A = oj (1 – oj)  

After substitution of the results of first two terms 

 A

∂Ed

∂netjE

A = – (tj – oj) oj (1 – oj)  

After application of SGD, 

 ∆wji = – η A

∂Ed

∂wji E

A = η (tj – oj) oj (1 – oj) xji = ηδj xji 

Estimation of weights in hidden unit 

A

∂Ed

∂netjE

A A ∑
K∈D ownstream(j)E

A A

∂Ed

∂netkE

A A

∂netk

∂netjE

A  

  = ∑K∈D ownstream(j) – δk A

∂netk

∂netjE

A  

  = ∑K∈D ownstream(j) – δk A

∂netk

∂oj E

A  A

∂oj

∂netjE

 

  = ∑K∈D ownstream(j) – δk wkj A

∂oj

∂netjE

 

  = ∑K∈D ownstream(j) – δk wkj oj (1 – oj) 
  = – oj (1 – oj) ∑K∈D ownstream(j) δk wkj  
 ∆wji = – ηxji oj (1 – oj) ∑K∈D ownstream(j) δk wkj  
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2.5.5.   Additional Information  

Convergence and local minima 

 Back propagation with SGD can guarantee to converge toward some local 
minimum E and not necessarily to the global minimum error. 

 Back Propagation is a highly effective function approximation method in 
practice 

Underfitting and overfitting 

 The cause of poor performance in machine learning is either over fitting or 
under fitting the data. 

 Supervised machine learning is best understood as approximating a target 
function (f) that maps input variables (X) to an output variable (Y). Y = f(X). 

 This characterization describes the range of classification and prediction 
problems and the machine algorithms that can be used to address them. 

 An important consideration in learning the target function from the training data 
is how well the model generalizes to new data. Generalization is important 
because the data we collect is only a sample, it is incomplete and noisy. 

 Generalization refers to how well the concepts learned by a machine learning 
model apply to specific examples not seen by the model when it was learning. 

 The goal of a good machine learning model is to generalize well from the 
training data to any data from the problem domain. This allows us to make 
predictions in the future on data the model has never seen. 

 Overfitting and underfitting are the two biggest causes for poor performance of 
machine learning algorithms. 

Overfitting in Machine Learning 

 Overfitting refers to a model that models the training data too well. 

 Overfitting happens when a model learns the detail and noise in the training data 
to the extent that it negatively impacts the performance of the model on new 
data.  
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 This means that the noise or random fluctuations in the training data is picked 
up and learned as concepts by the model.  

 The problem is that these concepts do not apply to new data and negatively 
impact the models ability to generalize. 

 Overfitting is more likely with nonparametric and nonlinear models that have 
more flexibility when learning a target function.  

 As such, many nonparametric machine learning algorithms also include 
parameters or techniques to limit and constrain how much detail the model 
learns. 

 A statistical model is said to be overfitted, when we train it with a lot of data. 

 When a model gets trained with so much of data, it starts learning from the 
noise and inaccurate data entries in our data set. 

 Then the model does not categorize the data correctly, because of too much of 
details and noise.  

 The causes of overfitting are the non-parametric and non-linear methods 
because these types of machine learning algorithms have more freedom in 
building the model based on the dataset and therefore they can really build 
unrealistic models.  

 Some weights begin to grow in order to reduce the error over the training data, 
and the complexity of the learned decision surface increase. 

 Given enough iterations, Backpropagation will often be able to create overly 
complex decision surfaces that fit noise in the training data or unrepresentative 
characteristics of the particular training sampletrees. 

Avoiding Overfitting 

Cross- Validation: A standard way to find out-of-sample prediction error is to use 
5-fold cross validation. 

Early Stopping: Its rules provide us the guidance as to how many iterations can be 
run before learner begins to over-fit. 

Pruning: Pruning is extensively used while building related models. It simply 
removes the nodes which add little predictive power for the problem in hand. 
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Regularization: It introduces a cost term for bringing in more features with the 
objective function. Hence it tries to push the coefficients for many variables to zero and 
hence reduce cost term. 

Underfitting in Machine Learning 

 Underfitting refers to a model that can neither model the training data nor 
generalize to new data. 

 An underfit machine learning model is not a suitable model and will be obvious 
as it will have poor performance on the training data. 

 Underfitting is often not discussed as it is easy to detect given a good 
performance metric. The remedy is to move on and try alternate machine 
learning algorithms. Nevertheless, it does provide a good contrast to the 
problem of overfitting. 

 A statistical model or a machine learning algorithm is said to have underfitting 
when it cannot capture the underlying trend of the data.  

  Underfitting destroys the accuracy of our machine learning model. Its 
occurrence simply means that our model or the algorithm does not fit the data 
well enough. It usually happens when we have less data to build an accurate 
model and also when we try to build a linear model with a non-linear data. 

  In such cases the rules of the machine learning model are too easy and flexible 
to be applied on such a minimal data and therefore the model will probably 
make a lot of wrong predictions.  

 Underfitting can be avoided by using more data and also reducing the features 
by feature selection. 

 

Fig. 2.11. Underfitting, Just Fit and Overfitting 
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Fig. 2.12. Tradeoff between underfitting and overfitting 

2.6.   INTRODUCTION TO GENETIC ALGORITHMS 

Genetic Algorithm (GA) is a search-based optimization technique based on the 
principles of Genetics and Natural Selection. It is commonly used to find optimal or 
near-optimal solutions to difficult problems which otherwise would take a lifetime to 
solve (optimization problems). They use adaptive heuristic search based on the 
evolutionary ideas of natural selection and genetics. They are inspired by the biological 
evolution. 

 

 

 

Genetic algorithms are a particular class of evolutionary algorithms that use 
techniques inspired by evolutionary biology such as inheritance, mutation, selection, 
and crossover. The genetic algorithms are seen as exploitation of random search to 
solve optimization problems using some historic information. The nature’s “Survival of 
the fittest” is the key deciding factor in the development of genetic algorithms. 

 

 

 

 

A Genetic Algorithm (GA) is a problem solving method that uses genetics as 
model of problem solving. This technique finds approximate solutions to 
optimization and search problems. 

A genetic algorithm maintains a population of potential candidate solutions 
for the given problem, and makes it evolve by iteratively applying a set of 
stochastic operators. 
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Stochastic Operators 

The following are the common stochastic operators: 

 Selection: This replicates the successful solutions found in a population based 
on their quality. 

 Recombination: This decomposes two distinct solutions and randomly mixes 
their parts to form novel solutions. 

 Mutation: This randomly forms a candidate solution. 

Basic Terminologies in GA: 

• Individual - Any possible solution got in the progress of the algorithm. 

• Population - Group of all individuals participating in the evolution.   

• Search Space - All possible solutions to the problem.  

• Chromosome - Blueprint for an individual.  

• Trait – Possible features of an individual 

• Allele - Possible settings or characteristics of trait. 

• Locus - The position of a gene on the chromosome. 

• Genome - Collection of all chromosomes for an individual. 

Generalized Genetic Algorithm 
GA(Fitness, Fitness_threshold, p, r, m) 
Fitness: A function that assigns an evaluation score, given a hypothesis. 
Fitnessthreshold: A threshold specifying the termination criterion. 
P: The number of hypotheses to be included in the population. 
r: The fraction of the population to be replaced by Crossover at each step. 
m: The mutation rate. 
Initialize population: P ← Generate p hypotheses at random 
Evaluate: For each h in P, compute Fitness(h) 
While [max Fitness(h)] < Fitness threshold do 
Create a new generation, Ps: 
1. Select: Probabilistically select (1 - r)p members of P to add to Ps. The probability 
Pr(hi) of selecting hypothesis hi from P is given by 
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 pr(hi)  = A

Fitness (hi)
∑ A

p
AEAEj = 1 EFitness (hj)

E  

2. Crossover: Probabilistically select (r.p)/2, pairs of hypotheses from P, according to 
Pr(hi) given above. For each pair (hl, h2), produce two offspring by applying the 
Crossover operator. Add all offspring to Ps. 
3. Mutate: Choose m percent of the members of Ps with uniform probability. For each, 
invert one randomly selected bit in its representation. 
4. Update: P ←Ps. 
5. Evaluate: for each h in P, compute Fitness(h) 
Return the hypothesis from P that has the highest fitness. 

Steps in Genetic Algorithm 

• A population containing p hypotheses is maintained.  

• On each iteration, the successor population Ps is formed by probabilistically 
selecting current hypotheses according to their fitness and by adding new 
hypotheses. 

• New hypotheses are created by applying a crossover operator to pairs of most fit 
hypotheses and by creating single point mutations in the resulting generation of 
hypotheses. 

• This process is iterated until sufficiently fit hypotheses are discovered.  

• The inputs to this algorithm include the fitness function for ranking candidate 
hypotheses, a threshold defining an acceptable level of fitness for terminating 
the algorithm, the size of the population to be maintained, and parameters that 
determine how successor populations are to be generated: the fraction of the 
population to be replaced at each generation and the mutation rate. 

• Each iteration through the main loop produces a new generation of hypotheses 
based on the current population. 

• A certain number of hypotheses from the current population are selected for 
inclusion in the next generation. 

• The probability at which hypothesis selection is made is given by 
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 pr(hi) = A

Fitness (hi)
∑ A

p
AEAEj = 1 EFitness (hj)

 

• The probability that a hypothesis will be selected is proportional to its own 
fitness and is inversely proportional to the fitness of the other competing 
hypotheses in the current population. 

• Once these members of the current generation have been selected for inclusion 
in the next generation population, additional members are generated using a 
crossover operation.  

• Cross over, takes two parent hypotheses from the current generation and 
creates two offspring hypotheses by recombining portions of both parents.  

• The parent hypotheses are chosen probabilistically from the current population, 
again using the probability function. 

• After new members have been created by this crossover operation, the new 
generation population now contains the desired number of members. 

• At this point, a certain fraction m of these members are chosen at random, and 
random mutations all performed to alter these members. 

• This GA algorithm thus performs a randomized, parallel beam search for 
hypotheses that perform well according to the fitness function.  

Advantages of GA 

− They do not require any derivative information.  

− It is faster and more efficient as compared to the traditional methods. 

− It has good parallel processing capabilities. 

− It is capable of optimizing both continuous and discrete functions and also 
multi-objective problems. 

− This provides a list of potential solutions from which optimized one could be 
isolated. 

− GA always converges to a solution, which gets better over the time. 

− This will be of immense use when the search space is very large and there are a 
large number of parameters involved. 
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Limitations of GA: 

− GAs are not suited for simple problems. 

− The calculation of fitness value is computationally expensive. 

− There is no guarantee for the algorithm to find the optimal solution. 

− Improper implementation may not converge to the optimal solution. 

2.6.1.   Representation of hypothesis 

 

 

• The problem solving process in GA is looking for the best solution in a specific 
subset of solutions or search space or state space. 

• Every point in the search space represents a possible solution. 

• So every point has a fitness value, depending on the problem definition. 

• In this search space, there lies a point or a set of points which gives the optimal 
solution.  

• The aim of optimization is to find that point or set of points in the search space. 

• The difficulties faced in finding best solution are the local minima problem and 
the starting point of the search. One does not know where to look for the 
solution and where to start.  

 

Fig. 2.13. Local maxima in search space 

The space of all feasible solutions called search 
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• For the genetic algorithm, the population encompasses a range of possible 
outcomes.  

• Solutions are identified purely on a fitness level, and therefore local optima or 
local maxima are not distinguished from other equally fit individuals.  

• Those solutions closer to the global optimum will thus have higher fitness 
values.  

• Successive generations improve the fitness of individuals in the population until 
the optimisation convergence criterion is met. Due to this probabilistic nature 
GA tends to the global optimum. 

• Hypotheses in GAs are often represented by bit strings, so that they can be 
easily manipulated by genetic operators such as mutation and crossover.  

• The hypotheses represented by these bit strings can be quite complex. Sets of if-
then rules can easily be represented in this way, by choosing an encoding of 
rules that allocates specific substrings for each rule precondition and post-
condition. 

• Placing a 1 in some position indicates that the attribute is allowed to take on the 
corresponding value. 

• Given this method for representing constraints on a single attribute, 
conjunctions of constraints on multiple attributes can easily be represented by 
concatenating the corresponding bit strings. 

Example: Consider the attribute Outlook which can take one among the three values 
<sunny, overcast, rainy>.  

 Encoding Outlook = 001 means that the attribute outlook takes the third 
value in the list or Outlook = rainy. 

 Encoding Outlook = 011 means that the attribute outlook takes the third 
value in the list or Outlook = overcast V rainy.  

Outlook Wind 
011 10 

Rule with precondition: (Outlook = Overcast V Rain) A (Wind = Strong) can be 
encoded as  

Rule with postcondition: IF Wind = Strong THEN PlayTennis = yes 
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Outlook Wind PlayTennis 
111 10 10 

• The bit string representing the rule contains a substring for each attribute in the 
hypothesis space, even if that attribute is not constrained by the rule 
preconditions.  

• This yields a fixed length bit-string representation for rules, in which substrings 
at specific locations describe constraints on specific attributes.  

• Given this representation for single rules, we can represent sets of rules by 
similarly concatenating the bit string representations of the individual rules. 

• In designing a bit string encoding for some hypothesis space, it is useful to 
arrange for every syntactically legal bit string to represent a well-defined 
hypothesis. 

2.6.2.   Genetic Operations 

After an initial population is randomly generated, the algorithm evolves the through 
three operators:  

1. Selection: Survival of the fittest 
2. Crossover: Mating between individuals 
3. Mutation: Random modifications.  

 
Fig. 2.14. Operators in GA 
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Selection Operator (Parents selection) 

• This gives preference to better individuals (survival of the fittest), allowing 
them to pass on their genes to the next generation.  

• The quality of each individual depends on its fitness function.  

• Fitness function may be an objective function or a subjective judgement.  

 
 

 

• Some of the strategies followed in implementing the selection operation are: 

 Fitness Proportionate Selection 

 Tournament Selection 

 Rank Selection 

 Random Selection 
Fitness Proportionate Selection 

 This strategy offers chance for every individual in the space to become a parent 
with a probability which is based on the fitness.  

 The fitter individual stands a higher chance of getting selected to mate and 
propagate their features to the next generation.  

 This strategy evolved better individuals over time. 

 This does not go well with negative fitness value. 

 There are two implementations of this strategy: 

a) Roulette Wheel Selection 

− Here a circular wheel is divided into n pies, where n is the number of 
individuals in the population. 

− Each individual gets a portion of the circle which is proportional to its fitness 
value. It is clear that a fitter individual has a greater pie on the wheel and 
therefore a greater chance of landing in front of the fixed point when the wheel 
is rotated. 

Selection is the process of selecting parents (candidates) from the search 
space which mate and recombine to create off-springs for the next generation. 
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− A fixed point is chosen on the wheel circumference and the wheel is rotated.  

− The region of the wheel which comes in front of the fixed point is chosen as the 
parent.  

− The process is repeated for selecting the next parent. 

Steps in Roulette Wheel Selection 

1. Calculate S = the sum of a finesses. 

2. Generate a random number between 0 and S. 

3. Starting from the top of the population, keep adding the finesses to the partial 
sum P, till P < S. 

4. The individual for which P exceeds S is the chosen individual. 

 
Fig. 2.15. Roulette Wheel Selection 

b) Stochastic Universal Sampling (SUS) 

− This is similar to Roulette wheel selection, but instead of having just one fixed 
point, multiple fixed points are used. 

− All the parents are chosen in just one spin of the wheel.  

− This setup encourages the highly fit individuals to be chosen at least once. 
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Tournament Selection 

 In K-Way tournament selection, K individuals are selected from the population 
randomly and the best is selected as the parent.  

 The same process is repeated for selecting the next parent.  

 It could be applied to problems with negative fitness values. 

 
Fig. 2.16. Tournament Selection 

Rank Selection 

 This method is commonly used when the individuals in the population have 
very close fitness values. 

 This works well with negative fitness value. 

 Here, all the individual possess equal share of the pie. 

 Each individual have same probability of getting selected as a parent.  

 This leads to poor parent selections in such situations. 

 Every individual in the population is ranked according to their fitness.  

 The selection of the parents depends on the rank of each individual and not the 
fitness. 
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 The higher ranked individuals are preferred more than the lower ranked ones. 

 The chromosomes are arranged in the table according to their rank. 

 
Fig. 2.17. Rank Selection 

Random Selection 

 Here the parents are randomly selected from the existing population.  

 There is no selection pressure towards fitter individuals and therefore this 
strategy is usually avoided. 

Crossover Operator 

• This is the prime distinguished factor of GA from other optimization 
techniques. 

• Any two individuals are chosen from the population using the selection 
operator. 

• A crossover site along the bit strings is randomly chosen.   
• The values of the two strings are exchanged up to the cross over point.  
• Example: If S1=000000 and s2=111111 and the crossover point is 2 then 

S1'=110000 and s2'=001111.  
• The two new offspring created from this mating are put into the next generation 

of the population.  

• By recombining portions of good individuals, this process is likely to create 
even better individuals. 
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• Some of the types of crossovers are discussed here. 

• Single Point cross over: In this one-point crossover, a random crossover point 
is selected and the tails of its two parents are swapped to get new off-springs. 

 

Fig. 2.18. Single point crossover 

• Multipoint cross over: Multi point crossover is a generalization of the one-
point crossover wherein alternating segments are swapped to get new off-
springs. 

 

Fig. 2.19. Multi point cross over 
• Uniform cross over: Each gene is treated independently. There is no 

partitioning the chromo some into segments.  Any one of the gene can be 
selected for cross over based on random selection. 

 

Fig. 2.20. Uniform Cross over 
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• Whole arithmetic recombination 
 This is commonly used for integer representations. 

 This takes the weighted average of the two parents, 

 Child 1 = α.x + (1 – α). y   

 Child 1 = α.x + (1 – α). y   

 If α = 0.5, then both the children will be identical. 

 

Fig. 2.21. Whole arithmetic cross over 

• Davis’ Order Crossover (0 X 1) 
 This is used for permutation based crossovers with the intention of 

transmitting information about relative ordering to the off-springs.  
 Create two random crossover points in the parent and copy the segment 

between them from the first parent to the first offspring. 
 Starting from the second crossover point in the second parent, copy the 

remaining unused numbers from the second parent to the first child, 
wrapping around the list. 

 Repeat for the second child with the parent’s role reversed. 

 

Fig. 2.22. Davis Order crossover 
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Mutation Operator 

• A portion of the new individuals will have some of their bits flipped.  
• The main objective is to maintain diversity within the population and inhibit 

premature convergence.  
• Mutation induces a random walk through the search space.  
• It is used to maintain and introduce diversity in the genetic population and is 

usually applied with a low probability. 

 

Fig. 2.23. Mutation operator 
• Some of the common mutation operator types are discussed below. 

• Bit flip mutation: Here one or more random bits are selected and flipped 
(changed).This is used for binary encoded GAs. 

 

Fig. 2.24. Bit flip mutation 

• Random Resetting: This can be seen as an extension of the bit flip for the 
integer representation. Here a random value from the set of permissible values is 
assigned to a randomly chosen gene. 

• Swap Mutation: Here two positions on the chromosome are selected at 
random, and the values are interchanged. This is common in permutation based 
encodings. 

 

Fig. 2.25. Swap Mutation 
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• Scramble Mutation: A subset of genes is chosen and their values are 
scrambled or shuffled randomly. 

 

Fig. 2.26. Scramble Mutation 
• Inversion Mutation: A subset of genes is chosen as in scramble mutation, but 

instead of shuffling the subset, invert the entire string in the subset. 

 

Fig. 2.27. Inversion Mutation 

Effects of Genetic Operators 

 When only selection operator is used, the entire population will be the copies of 
the best individual.  

 When both selection and crossover operators are combined, they will make the 
algorithms to converge on a good but sub-optimal solution (local optima).  

 When only mutation operation is done, then it is similar to random search, 
which may not result in good solution. 

 Combining selection and mutation creates a parallel, noise-tolerant, hill 
climbing algorithm. 

2.7.   HYPOTHESIS SPACE SEARCH 

• GA employ a randomized beam search method to seek a maximally fit 
hypothesis. The GA search can move much more abruptly, than the searches 
occurring in other algorithms like back propagation.  

• The update in search space in GA is replacing a parent hypothesis by an 
offspring that may be totally different from the parent.  

• This GA search is less likely to fall into the same kind of local minima that can 
plague gradient descent methods. 

• The major hurdle in GAs is the problem of crowding. 
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• Crowding is a phenomenon in which some individual that is more highly fit 
than others in the population quickly reproduces, so that copies of this 
individual and very similar individuals take over a large fraction of the 
population.  

• The negative impact of crowding is that it reduces the diversity of the 
population, thereby slowing further progress by the GA. The variance among 
the population is confined. 

• One of the promising way to mitigate crowding effect is to alter the selection 
function, using tournament selection or rank selection in place of fitness 
proportionate roulette wheel selection.  

• Alternatively, fitness sharing can be done in which the measured fitness of an 
individual is reduced by the presence of other, similar individualism the 
population.  

• A third approach is to restrict the kinds of individuals allowed to recombine to 
form offspring. For example, by allowing only the most similar individuals to 
recombine, we can encourage the formation of clusters of similar individuals, or 
multiple subspecies within the population.  

• A related approach is to spatially distribute individuals and allow only nearby 
individuals to recombine .many of these techniques are inspired by the analogy 
to biological evolution. 

2.7.1.   Population Evolution and the Schema Theorem 

• The objective of the Schema theorem is to provide a formal model for the 
effectiveness of the GA search process. This theorem is formalised by Holland 
and popularized by Goldberg. 

• This concentrates on providing a model for the expectation of schema survival, 
where this naturally represents a limitation in itself. 

• An individual bit string can be viewed as a representative of each of the 
different schemas that it matches.  

• The bit string 0010 can be thought of as a representative of 24 distinct schemas 
including 00**, 0* 10, ****, etc. 
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• A population of bit strings can be viewed in terms of the set of schemas that it 
represents and the number of individuals associated with each of these schema. 

• The schema theorem characterizes the evolution of the population within a GA 
in terms of the number of instances representing each schema. 

• The schema H = [0 1 * 1 *] identifies the chromosome set 
0 1 0 1 0 
0 1 0 1 1 
0 1 1 1 0 
0 1 1 1 1 

 

 

 

 

 

• The evolution of the population in the GA depends on the selection step, the 
recombination step, and the mutation step.  

• Let f(h) denote the fitness of the individual bit string h and f(A h→E

A)denote the 
average fitness of all individuals in the population at time t. 

• Let n be the total number of individuals in the population. Let h ε s ∩ pt, 
indicate that the individual h is both a representative of schemas and a member 
of the population at time t. 

• Let û (s, t) denotes the average fitness of instances of schemas in the population 
at time t. 

• E[m(s, t+1)] is the using the probability distribution for selection 

 Pr (h) =  A

f(h)
∑ A

n
AEAEi = 1 E f(hi)

E  

    EA

f(h)

En Af–A(t)E

A  

Let m(s, t) denote the number of instances of schemas in the population 
at time t (i.e., during the tth generation). The schema theorem describes the 
expected value of m(s, t + 1) in terms of m(s, t) and other properties of the 
schema, population, and GA algorithm parameters. 
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• If n member is selected for the new population according to this probability 
Distribution, then the probability that we will select a representative of schemas 
is 

 Pr(h ∈ s) = ∑h∈s∩pt EA

f(h)

En Af–A(t)E

A  

  = EEA

Aû A(s ,E t)

nAf–A(t)E

A m (s , t)  

Since  Aû E

A(s , t) = A

∑h∈s∩p f(h)
Em(s, t)E

A  

• The above equation gives the probability that a single hypothesis selected by the 
GA will be an instance of schemas. 

 E(m(s , t  + 1)] = EEA

Aû A(s ,E t)

nAf–A(t)E

A m(s , t)  

• The schemas with above average fitness to be represented with increasing 
frequency on successive generations.  

• If we view the GA as performing a virtual parallel search through the space of 
possible schemas at the same time it performs its explicit parallel search through 
the space of individuals. 

• The schema theorem considers only the possible negative influence of the 
genetic operators. 

• The full schema theorem thus provides a lower bound on the expected 
frequency of schemas, as follows: 

 E(m(s , t  + 1)] ≥ EEA

Aû A(s ,E t)

nAf–A(t)E

A m(s , t) A


 

AE

 
E1 – pc A

d(s)
El  – 1E

AA


 
AE

 
E (1 – pm)o(s)  

m(s , t) = instances of schema s  in pop at time t  

Af–E

A(t) = average fitness of pop, at time t  

Aû E

A(s , t) = ave. fitness of instances of s  at time t  

pc = probability of single point crossover operator 
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pm = probability of mutation operator 

l  = length of single bit strings 

o(s) = number of defined (non “*”) bits in s  

d(s) = distance between leftmost, rightmost defined bits in s  

2.8.   GENETIC PROGRAMMING 

 

 

 

 

Genetic programming can automatically create a general solution to a problem in the 
form of a parameterized topology. Genetic programming starts from a high-level 
statement of what needs to be done and automatically creates a computer program to 
solve the problem. Genetic Programming delivers High-Return Human-Competitive 
Machine Intelligence. Often genetic programming is confused with the term genetic 
algorithms. The following table states their differences: 

Genetic Algorithms (GA) Genetic Programming (GP) 
GAs deal with binary strings or real 
strings. 

GP involves construction of tree 
structure. 

Posts processing of results are needed. No post processing of results are needed. 
The length of the coded string is static. The length of the tree can be dynamic. 

The solution or program designed through genetic programming has two basic 
nodes: 

Terminals:  The terminal set contains nodes that provide an input to the GP system. 

Functions: Function set contains nodes that process values already in the system. 

Basic steps in GP 
The five basic preparatory steps in GP are listed below: 

Genetic programming (GP) is a form of evolutionary computation in which 
the individualism the evolving population are computer programs rather than 
bit strings. 
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(1) Deciding the set of terminals (i.e.) the independent variables and constant of the 
problem, 

(2) Deciding the set of primitive functions for each branch of the to-be-evolved 
computer program 

(3) Specifying the fitness measure  

(4) Specifying the parameters for controlling the running of the program 

(5) Specifying a termination criterion and method for designating the result of the 
run. 

 

Fig. 2.28. Steps in Genetic Programming 

Representing Programs 

Programs manipulated by a GP are typically represented by trees corresponding to 
the parse tree of the program. Each function call is represented by a node in the tree, 
and the arguments to the function are given by its descendant nodes. 

 

Fig. 2.29. Tree for sin x + A x2 + yE 
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Crossover Operation 
• The prototypical genetic programming algorithm maintains a population of 

individuals.  

• On each iteration, it produces a new generation of individuals using selection, 
crossover, and mutation.  

• The fitness of a given individual program in the population is typically 
determined by executing the program on a set of training data.  

• Crossover operations are performed by replacing a randomly chosen subtree of 
one parent program by a subtree from the other parent program. 

 
Fig. 2.30. Crossover Operation 
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Example: 

Construct a parse tree for the prefix programming statement 

(+ 1  2 (IF (> TIME 10) 3  4) ). 

Create the terminal set and function set for the give statement. 

Terminal set T= {1, 2, 10, 3, 4, TIME} 

Function set F= {+, IF, > } 

 
Perform mutation over the given parental tree. 

Steps:  

Select parent probabilistically based on fitness 

Pick point from 1 to NUMBER-OF-POINTS 

Delete subtree at the picked point 

Grow new subtree at the mutation point in same way as generated trees for initial 
random population (generation 0). 

The result is a syntactically valid executable program. 
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After mutation, 

 

Perform crossover for the given programs (given as trees). 

Steps: 

• Select two parents probabilistically based on fitness 

• Randomly pick a number from 1 to NUMBER-OF-POINTS independently for 
each of the two parental programs 

• Identify the two subtrees rooted at the two picked points 

Parent 1: (+ (* 0.234 Z) (- X 0.789)) 

Parent 2: (* (* Z Y) (+ Y (* 0.314 Z)) ) 
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  Parent 1       Parent 2 
Offsprings: 

     

   Offspring 1     Offspring 2 

2.9.   MODELS OF EVALUATION AND LEARNING 

2.9.1.    Lamarckian Evolution 

• Lamarck proposed that evolution over many generations was directly influenced 
by the experiences of individual organisms during their lifetime.  

• The experiences of a single organism directly affected the genetic makeup of 
their offspring: I fan individual learned during its lifetime to avoid some toxic 
food, it could pass this trait on genetically to its offspring, which therefore 
would not need to learn the trait.  

• This is an attractive conjecture, because it would presumably allow for more 
efficient evolutionary progress than a generate-and-test process that ignores the 
experience gained during an individual's lifetime. 
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• Despite the attractiveness of this theory, current scientific evidence over 
whelmingly contradicts Lamarck's model.  

• The currently accepted view is that the genetic makeup of an individual is, in 
fact, unaffected by the lifetime experience of one's biological parents.  

• Despite this apparent biological fact, recent computer studies have shown that 
Lamarckian processes can sometimes improve the effectiveness of 
computerized genetic. 

2.9.2.   Baldwin Effect 

• The Lamarckian evolution is not an accepted model of biological evolution, 
other mechanisms have been suggested by which individual learning can alter 
the course of evolution.  

• The Baldwin effect is based on the following observations: 

• If a species is evolving in a changing environment, there will be evolutionary 
pressure to favour individuals with the capability to learn during their lifetime.  

• Those individuals who are able to learn many traits will rely less strongly on 
their genetic code to hard-wire traits. As a result, these individual scan support a 
more diverse gene pool, relying on individual learning to overcome the 
"missing" or "not quite optimized" traits in the genetic code. 

• The Baldwin effect provides an indirect mechanism for individual learning to 
positively impact the rate of evolutionary progress.  

• By increasing survivability and genetic diversity of the species, individual 
learning supports more rapid evolutionary progress, thereby increasing the 
chance that the species will evolve genetic, non learned traits that better fit the 
new environment. 

• There have been several attempts to develop computational models to study the 
Baldwin effect.  

• The genetic makeup of the individual determined which weights were trainable 
and which were fixed. In their experiments, when no individual learning was 
allowed, the population failed to improve its fitness over time.  
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• However, when individual learning was allowed, the population quickly 
improved its fitness. 

• During early generations of evolution the population contained a greater 
proportion of individuals with many trainable weights. However, as evolution 
proceeded, the number of fixed, correct network weights tended to increase, as 
the population evolved toward genetically given weight values and toward less 
dependence on individual learning of weights. 



 

BAYESIAN AND COMPUTATIONAL 
LEARNING 

3.1.   INTRODUCTION TO BAYESIAN LEARNING 

Bayesian reasoning provides a probabilistic approach to drawing inferences. It is 
based on the assumption that the quantities of interest are governed by probability 
distributions and that optimal decisions can be made by reasoning about these 
probabilities together with observed data. This provides a quantitative approach for 
weighing the evidence supporting alternative hypotheses. Bayesian reasoning is a 
platform for learning algorithms that directly manipulate probabilities and to analyse 
the operation of other algorithms that do not explicitly manipulate probabilities. 
Bayesian machine learning is a particular set of approaches to probabilistic machine 
learning that treats model parameters as random variables. 

Bayesian learning outperforms other learning because: 

• It provides practical learning algorithms such as Naive Bayes, Bayesian belief 
network learning that combine prior knowledge (prior probabilities) with 
observed data. This method requires prior probabilities 

• It provides useful conceptual framework for evaluating other learning 
algorithms 

Features of Bayesian Learning 

• Each observed training example can incrementally decrease or increase the 
estimated probability that a hypothesis is correct. This provides a more flexible 
approach to learning than algorithms that completely eliminate a hypothesis if it 
is found to be inconsistent with any single example. 

UNIT 
3 
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• Prior knowledge can be combined with observed data to determine the final 
probability of a hypothesis. In Bayesian learning, prior knowledge is provided 
by asserting  

 a prior probability for each candidate hypothesis 

 a probability distribution over observed data for each possible hypothesis. 

• Bayesian methods can accommodate hypotheses that make probabilistic 
predictions. 

• New instances can be classified by combining the predictions of multiple 
hypotheses, weighted by their probabilities. 

• They are computationally intractable, that is they can provide a standard of 
optimal decision making against which other practical methods can be 
measured. 

Limitations of Bayesian Learning 

 Require initial knowledge of many probabilities. When these probabilities are 
not known in advance they are often estimated based on background 
knowledge, previously available data, and assumptions about the form of the 
underlying distributions. 

 It demands significant computational cost required to determine the Bayes 
optimal hypothesis in the general case. 

3.2.   BAYES THEOREM 

• Bayes theorem describes how the conditional probability of an event or a 
hypothesis can be computed using evidence and prior knowledge. 

 

 

 

• Mathematically, Bayes theorem is given by 

 P(hD) = A

P(Dh) P(h)
EP(D) E

 

 

Bayes theorem provides a way to calculate the probability of a hypothesis 
based on its prior probability, the probabilities of observing various data given 
the hypothesis, and the observed data itself 
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⇒ h is called the proposition and D is called the evidence. 

 P(raincloud) = A

P(cloudrain) P(rain)
EP(cloud)E

 

⇒ P(h) is called the prior probability of proposition [P(rain) is true means its 
raining] and P(D) is called the prior probability of evidence [P(cloud) is 
true, means its cloudy].  

⇒ P(hD) is called the posterior probability of h given D. [Probability of 
raining is true given its Cloudy] 

⇒ P(Dh) is called the likelihood of D given h. [Probability of Cloudy is true 
given its Raining] 

Example: Three factories A, B, C of an electric bulb manufacturing company 
produce respectively 35%, 35% and 30% of the total output. Approximately 
1.5%, 1% and 2% of the bulbs produced by these factories are known to be 
defective. If a randomly selected bulb manufactured by the company was found 
to be defective, what is the probability that the bulb was manufactures in factory 
A?  
Solution: 

Let A, B, C denote the events that a randomly selected bulb was 
manufactured in factory A, B, C respectively. Let D denote the event that a bulb 
is defective. We have the following data:  

P(A) = 0.35,  P(B) = 0.35, P(C) = 0.30 and 
  P(DA) = 0.015, P(DB) = 0.010, P(DC) = 0.020  

We are required to find P(AD). By the generalisation of the Bayes’ theorem 
we have:  

 P(AD) = A

P(DA) P(A)
EP(DA) P(A) + P(DB) P(A) + P(DC) P(C)E

 

  = A

0.015 × 0.35
0.015 × 0.35 + 0.010 × 0.35 + 0.020 × 0.30E

A = 0.356 

Hence, 35.6% probability that the bulb manufactured by the company A was 
found to be defective.  
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Maximum A Posterior (MAP) 

• The learner considers some set of candidate hypotheses H and is interested in 
finding the most probable hypothesis h εH given the observed data D. 

• Any such maximally probable hypothesis is called a maximum a posterior 
(MAP) hypothesis. This can be found by Bayes theorem to calculate the 
posterior probability of each candidate hypothesis. 

• This is an estimate of an unknown quantity, that equals the mode of the 
posterior distribution.  

• The MAP can be used to obtain a point estimate of an unobserved quantity on 
the basis of empirical data. 
Maximum a posterior hypothesis hMAP 

 hMAP = Aargmax
h ∈ H E

A P(hD) 

  = Aargmax
h ∈ H E

A A

P(Dh) P(h)
EP(D) E

 

  = Aargmax
h ∈ H E

A P(Dh) P(h) 

Maximum Likelihood (ML) Hypothesis 

• Sometimes it is assumed that every hypothesis is equally probable a priori. In 
this case, the equation above can be simplified because P(D|h) is often called the 
likelihood of D given h, any hypothesis that maximizes P(D|h) is called 
maximum likelihood (ML) hypothesis 

• When (hi) = P(hj), it can be further simplified, and become Maximum likelihood 
(ML) hypothesis 

 hML = Aargmax
hi∈ H E

A P(Dhi) 

Differences between ML and MAP 
Sl. 
No. Maximum A Posterior Maximum Likelihood 

1 Maximum a posterior (MAP) 
estimation is the value of the parameter 
that maximizes the entire posterior 

ML of a parameter is the value of the 
parameter that maximizes the 
likelihood, where the likelihood is a 
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distribution (which is calculated using 
the likelihood). A MAP estimate is the 
mode of the posterior distribution. 

function of the parameter and is 
actually equal to the probability of the 
data conditioning on that parameter. 

2 Suppose x is the quantity we are trying 
to estimate, and that some operation on 
x has yielded y. what is the best 
possible value of x given the fact that 
the observation has a value y. 

This is about what value of x best 
explains the observed value, y. 

3 MAP estimation produces the value of 
x that maximizes p(y|x) *p(x). 

ML estimation attempts to find the 
value of x that maximizes p(y|x) 

3.3.   CONCEPT LEARNING AND BAYES THEOREM 

Bayes theorem provides a way to calculate the posterior probability of each 
hypothesis given the training data, it can be used as the basis for a straightforward 
learning algorithm that calculates the probability for each possible hypothesis, and then 
outputs the most probable.  

3.3.1.   Fundamental Probability Rules  

• Product Rule (Joint probability): The probability P(A ∧ B) of a conjunction 
of two events A and B: 

 
 P(A∩B) = P(AB) P(B) = P(BA) P(A) 

• Sum Rule (Union Rule): The probability of a disjunction of two events A and 
B: 

 P(A∪B) = P(A) + P(B) – P(A∩B) 

If the events A and B are mutually exclusive, then 

 P(A∪B) = P(A) + P(B) 
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• Theorem of total probability: if events A1,…, An are mutually exclusive with, 
then 

 ∑ A

n
AEi = 1 E P(Ai) = 1 

 P(B) = A ∑

i  = 1
n E A P(BAi) P(Ai)  

Conditional Probability: The conditional probability of event A, given that event B 
is true, as follows: 

 P(AB) = A

P(A, B)
EP(B) E

A if p(B) > 0 

3.3.2.   Brute Force MAP Hypothesis Learner 

A learner is some finite hypothesis space H defined over instance space X whose 
task is to learn some target concept c:X[0, 1]. The learner is set of training examples 
of the form (xi, di), where x is some instance from training set and d is the target value.  

Brute Force MAP learning algorithm 
1. For each hypothesis h in H, calculate the posterior probability 

 P(hD) = A

P(Dh) P(h)
EP(D) E

 

2. Output the hypothesis hMAP with the highest posterior probability 

 hMAP = Aargmax
h ∈ H E

A P(hD) 

• This algorithm requires significant computation, because it applies Bayes 
theorem to each hypothesis in H to calculate P(h|D).  

• In order solve a learning problem using the brute force learning algorithm, the 
values of P(h) and P(D|h) must be specified.  

• The P(h) and P(D|h) must adhere to the following assumptions: 
 The training data D is noise free. (i.e., di = c(xi)) 

 The target concept c is contained in the hypothesis space H 

(∃h ∈ H) [(∀x ∈ X) [h(x) = c(x)] 

 There is no reason to believe that any hypothesis is more probable than any 
other. 
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P(h) = A

1
H E

A for all h ∈ H 

P(Dh) = A




 
1 if di = h(xi)    for all di ∈ D
E0   otherwise

E 

Let <x1, x2, x3, …xm> be the fixed set of instances with targets D = < c(x1),c( x2), 
c(x3), …c(xm) >. Then  choose P(D|h ) such that 

• P(D|h) = 1 if h consistent with D 

• P(D|h) = 0 otherwise 

Choose P(h) to be uniform distribution:  

 P(h) = 1/|H| for all h in H 

Then, 

 P(h|D) = EA




 

A

1
|VSH,D| AE   if h is consistent with D

0    otherwise
E 

The probability of data D given hypothesis h is 1 if D is consistent with h, and 0 
otherwise. As training data accumulates, the posterior probability for inconsistent 
hypotheses becomes zero while the total probability summing to one is shared equally 
among the remaining consistent hypotheses. 

 
Fig. 3.1. Evolution of Posterior probabilities 

In the Fig 3.1 a) all the hypotheses have the same probability, whereas in (b) + (c) as 
training data accumulates, the posterior probability builds on. In case of inconsistent 
hypotheses becomes zero while the total probability summing to 1 is shared equally 
among the remaining consistent hypotheses. 
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Fig. 3.2. Overview of Brute force MAP learning 

3.3.3.   MAP Hypothesis and Consistent Learners 

 

 

 

 

 

• A learning algorithm is a consistent learner when it outputs a hypothesis that 
commits zero errors over the training examples. 

• The Bayesian framework allows one way to characterize the behaviour of 
learning algorithms, even when the learning algorithm does not explicitly 
manipulate probabilities.  

• By identifying probability distributions P(h) and P(D|h) under which the 
algorithm outputs optimal hypotheses, which characterizes the implicit 
assumptions, under which this algorithm behaves optimally. 

• Here, instead of modeling the inductive inference method by an equivalent 
deductive System, we model it by an equivalent probabilistic reasoning system 
based on Bayes theorem.  

• The implicit assumptions that we attribute to the learner are assumptions of the 
form "the prior probabilities over H are given by the distribution P(h), and the 
strength of data in rejecting or accepting a hypothesis is given by P(D|h). 

Every consistent learner outputs a MAP hypothesis, on uniform prior 
probability distribution over H (i.e., P(hi) = P(hj) for all (i,j), and on 
deterministic, noise free training data (i.e., P(D |h) =1 if D and h are 
consistent, and 0 otherwise). 
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3.4.   MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

• In statistics, maximum likelihood estimation (MLE) is a method of estimating 
the parameters of a probability distribution by maximizing a likelihood function, 
so that under the assumed statistical model the observed data is most probable. 

• Maximum likelihood estimation is a method that determines values for the 
parameters of a model.  

• The parameter values are found such that they maximise the likelihood that the 
process described by the model produced the data that were actually observed. 

 

 

 

 

• This infers that the Bayesian justification for many neural network and other 
curve fitting methods that attempt to minimize the sum of squared errors over 
the training data. 

• Consider Learner L considers an instance space X and a hypothesis space H 
consisting of some class of real-valued functions defined over X. 

• The problem faced by L is to learn an unknown target function f: XY drawn 
from H. 

• A set of m training examples is provided, where the target value of each 
example is corrupted by random noise drawn according to a Normal probability 
distribution.  

• More precisely, each training example is a pair of the form (xi, di)) where  
di = f(xi) + ei. 

• The task of the learner is to output a maximum likelihood hypothesis, or, 
equivalently, a MAP hypothesis assuming all hypotheses are equally probable a 
priori. 

Under certain assumptions any learning algorithm that minimizes the squared 
error between the output hypothesis predictions and the training data will output 
a maximum likelihood hypothesis. 
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Fig. 3.3. Learning a real valued Function 

• In Fig 3.3, the target function f corresponds to the solid line. 

• The training examples (xi, di) are assumed to have Normally distributed noise ei 
with zero mean added to the true target value f(xi).  

• The dashed line corresponds to the linear function that minimizes the sum of 
squared errors.  

Probability Density Function (PDF) 

A probability density function (PDF) is a mathematical function that describes the 
probability of each member of a discrete set or a continuous range of outcomes or 
possible values of a variable. 

 p(x0) = A

lim
AE

∈ → 0
E A

1
∈E

A P(x0 ≤ x < x0 + ∈) 

Normal Distribution  

A Normal distribution is a smooth, bell-shaped distribution that can be completely 
characterized by its mean µ and its standard deviation σ. The noise variable follows 
normal distribution. 
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The maximum likelihood hypothesis h is the one that minimizes the sum of squared 
errors: 

 hML = Aargmin
h∈HE

A A ∑

i  = 1
m EA(di – h(xi))2 

For a a fixed set of training instances (x1,…,xm) and therefore consider the data D to 
be the corresponding sequence of target values D = (dl . . .dm). Here di = f(xi) + ei. 

Assuming the training examples are mutually independent given h, 

 hML = Aargmin
h∈HE

A A Π
m

i = 1
E A p(di|h) 

The noise ei obeys a Normal distribution with zero mean and unknown variance, 
each di must also obey a Normal distribution with variance σ2centered around the true 
target value f (xi) rather than zero. 

 hML = Aargmin
h∈HE

A AΠ
m

i = 1
E A EA

1
A 2πσ2

AE

A e A

– A

1
2σ2AEEA (di – µ)2

  

  = Aargmin
h∈HE

A AΠ
m

i = 1
E A EA

1
A 2πσ2

AE

A e A

– A

1
2σ2AEEA (di – h(xi))

2

  

Applying transformation that is common in maximum likelihood calculations: 
Rather than maximizing the above complicated expression we shall choose to 
maximize its logarithm. This is justified because lnp is a monotonic function of p. 
Therefore maximizing lnp also maximizes p. 

 hML = Aargmin
h∈HE

A A ∑

i  = 1
m EAln EA

1
A 2πσ2

AE

A – A

1
2σ2E

A (di – h(xi))2 

The first term in this expression is a constant independent of h, and can therefore be 
discarded, yielding 

 hML = Aargmin
h∈HE

A A ∑

i  = 1
m EA– A

1
2σ2E

A (di – h(xi))2 

Maximizing this negative quantity is equivalent to minimizing the corresponding 
positive quantity. 

 hML = Aargmin
h∈HE

A A

1
2σ2E

A (di – h(xi))2 
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Discard constants that are independent of h. 
 hML = Aargmin

h∈HE

A A ∑

i  = 1
m EA(di – h(xi))2 

Thus the maximum likelihood hypothesis minimizes the sum of the squared errors 
between the observed training values and the hypothesis predictions. 

3.5.   MAXIMUM LIKELIHOOD HYPOTHESES 

The maximum likelihood hypothesis is the one that minimizes the sum of squared 
errors over the training examples. To maximize the likelihood find P(D|h) as: 

 P(D|h) = AΠ
m

i = 1
E A P(xi, di|h) 

where xi and di as random variables, and assuming that each training example is 
drawn independently. Also, the probability of encountering any particular instance xi is 
independent of the hypothesis h. When x is independent of h, rewrite as: 

 P(D|h) = AΠ
m

i = 1
E A P(xi, di|h) = AΠ

m

i = 1
E A P(di|h, xi) P(xi) 

 P(di|h, xi) = A




 

h(xi) E   if di = 1
(1 – h(xi))   if di = 0E 

 P(di|h, xi) = h(xi)d
i – (1 – h(xi))1 – d

i 

When di = 1, the second term in the previous equation becomes 1. Hence 

 P(di = 1|h, xi) = h(xi) 

 P(D|h) = AΠ
m

i = 1
E A h(xi)d

i (1 – h(xi)) 1 – d
i  P(xi) 

 hML = Aargmin
h∈HE

A AΠ
m

i = 1
E A h(xi)d

i (1 – h(xi)) 1 – d
i  P(xi) 

The last term is independent of h. So it can be dropped 

 hML = Aargmin
h∈HE

A AΠ
m

i = 1
E A h(xi)d

i (1 – h(xi)) 1 – d
i  

3.5.1.   Gradient Search to Maximize Likelihood in a Neural Net 

The gradient of G(h, D) is given by the vector of partial derivatives of G(h, D) with 
respect to the various network weights that define the hypothesis h represented by the 
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learned network. The partial derivative of G(h, D) with respect to weight wjk from input 
k to unit j is: 

 A

∂G(h, D)
E∂wjkE

A = A ∑

i  = 1
m EAA

∂G(h, D)
E∂h(xi)E

A A

∂h(xi)
E∂wjkE

 

  = A ∑

i  = 1
m EAA

∂(di ln h(xi) + (1 – di) ln (1 – h(xi)))
E∂h(xi)E

A A

∂h(xi)
E∂wjkE

 

  = A ∑

i  = 1
m EAA

di – h(xi)
Eh(xi) (1 – h(xi))E

A A

∂h(xi)
E∂wjkE

 

The neural network consists of single layered sigmoid units: 

 A

∂h(xi)
E∂wjkE

A = σ′(xi) xijk = h(xi) (1 – h(xi)) xijk 

The expression for the derivatives that constitute the gradient 

 A

∂G(h, D)
E∂wjkE

A = A ∑

i  = 1
m EA(di – h(xi)) xijk 

Since the aim is to maximize not to minimize P(D|h), gradient ascent is performed  
rather than gradient descent search. 

 wjk ← wjk + ∆wjk 

Where 
 ∆wjk = η A ∑

i  = 1
m EA(di – h(xi)) xijk 

The above equation is also seen as update rule for output unit weights. So rewriting, 
 wjk ← wjk + ∆wjk 

Where 
 ∆wjk = η A ∑

i  = 1
m EAh(xi) (1 – h(xi)) (di – h(xi)) xijk 

In short, the two weight update rules infer: 

• The rule that minimizes sum of squared error seeks the maximum likelihood 
hypothesis under the assumption that the training data can be modeled by 
Normally distributed noise added to the target function value.  
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• The rule that minimizes cross entropy seeks the maximum likelihood hypothesis 
under the assumption that the observed boolean value is a probabilistic function 
of the input instance. 

3.6.   MINIMUM DESCRIPTION LENGTH (MDL) PRINCIPLE 

 

 

 

 

 
The principle of MDL is from information theory. Consider the problem of 

designing a code C to transmit messages drawn at random probability of encountering 
message i is pi. The compacted code is represented by C. It has been found by Shannon 
that number of bits to form optimal code is -log2 pi.  

MDL methods are particularly well-suited for dealing with model selection, 
prediction, and estimation problems in situations where the models under consideration 
can be arbitrarily complex, and overfitting the data is a serious concern.  

The hMAP is estimated using, 
 hMAP = Aargmax

h∈HE

A P(D|h) P(h) 

 hMAP = Aargmax
h∈HE

A log2 P(D|h) P(h) + log2 P(h) 

 hMAP = Aargmin
h∈HE

A – log2 P(D|h) – log2 P(h) 

The last equation minimizes the negative of this quantity. 
Applying Shannon’s method of optimizing number of bits to MDL,  
• LCH(h) = – log2 P(h), where CH is the optimal code for hypothesis space H. 
 LCD|h

 (D|h) = – log2 P(D|h) 

Where CD|h is the optimal code for describing data D assuming that both the sender 
and receiver know hypothesis h 

Rewriting hMAP as that minimizes the sum given by the description length of the 
hypothesis plus the description length of the data given the hypothesis: 

MDL is based on the following insight: any regularity in the data can be 
used to compress the data, i.e. to describe it using fewer symbols than the 
number of symbols needed to describe the data literally. 
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 hMAP = Aargmin
h∈HE

A LCH
 (h) + LCD|h (D|h) 

The Minimum Description Length (MDL) principle recommends choosing the 
hypothesis that minimizes the sum of these two description lengths. To apply this 
principle in practice chooses specific encodings or representations appropriate for the 
given learning task.  Assuming to use the codes C1 and CZ to represent the hypothesis 
and the data given the hypothesis, we can state the MDL principle as 

Minimum Description Length: Choose hMDL where 

 hMDL = Aargmin
h∈HE

A LC1
 (h) + LC2 (D|h) 

• The MDL principle as recommending the shortest method for re-encoding the 
training data, where we count both the size of the hypothesis and any additional 
cost of encoding the data given this hypothesis 

• Thus the MDL principle provides a way of trading off hypothesis complexity 
for the number of errors committed by the hypothesis. It might select a shorter 
hypothesis that makes a few errors over a longer hypothesis that perfectly 
classifies the training data.  

• Viewed in this light, it provides one method for dealing with the issue of 
overfitting the data. 

3.7.   OPTIMAL BAYES CLASSIFIER 

 

 

 

 

• The Bayes Theorem provides a principled way for calculating a conditional 
probability. 

• It is also closely related to the Maximum a Posterior which is a probabilistic 
framework referred to as MAP that finds the most probable hypothesis for a 
training dataset. 

• But the Bayes Optimal Classifier is computationally expensive. 

Bayes Optimal Classifier is a probabilistic model that finds the most probable 
prediction using the training data and space of hypotheses to make a prediction 
for a new data instance. 
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• If the possible classification of the new example can take on any value vj from 
some set V, then the probability P(vj| D) that the correct classification for the 
new instance is vj:  

 P(vj|D) = A ∑

hi  ∈ H
  E AP(vj|hi) P(hi|D) 

Example: Consider the set of hypothesis H = {h1, h2, h3} where P(h1) = 0.4; 
P(h2) = 0.3; P(h3) = 0.3; A new instance x is classified positive by h1 and 
negative by h2 and h3. 

P(h1, D) = 4  P(⊖, h1) = 0   P(⊕, h1) = 1 

P(h2, D) = 3  P(⊖, h2) = 1   P(⊕, h2) = 0 

P(h3, D) = 3  P(⊖, h3) = 1   P(⊕, h3) = 0 

Where ⊖ denotes negative class and ⊕ denotes positive class. 
 ∑hi ∈ H P(⊕|hi) P(hi|D) = 4 

 ∑hi ∈ H P(⊖|hi) P(hi|D) = 6 

Hence, according to optimal Bayes classifier, 
Aargumax

vj∈{⊕, ⊖} E

A ∑hi ∈ H P(vj|hi) P(hi|D) = ⊖ 

This method maximizes the probability that the new instance is classified correctly, 
given the available data, hypothesis space, and prior probabilities over the hypotheses. 

3.8.   GIBBS ALGORITHM 

Though Bayes classifier yields accurate results, it is computationally expensive 
since it has to estimate the prior probabilities. Gibb’s algorithm reduces the 
computations. 

Generalised Gibb’s Algorithm 
1. Choose a hypothesis h from H at random, according to the posterior 

probability distribution over H. 
2. Use h to predict the classification of the next instance x. 

• Given a new instance to classify, the Gibbs algorithm simply applies a 
hypothesis drawn at random according to the current posterior probability 
distribution. 
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• The expected value is taken over target concepts drawn at random according to 
the prior probability distribution assumed by the learner.  

• Under this condition, the expected value of the error of the Gibbs algorithm is at 
worst twice the expected value of the error of the Bayes optimal classifier. 

E[errorGibbs]  ≤ 2E[error Bayes Optional] 

• In particular, it implies that if the learner assumes a uniform prior over H, and if 
target concepts are in fact drawn from such a distribution when presented to the 
learner, then classifying the next instance according to a hypothesis drawn at 
random from the current version space will have expected error at most twice 
that of the Bayes optimal classifier.  

3.9.   NAIVE BAYES ALGORITHM 

 

 

 

 

When a set of training examples of the target function is provided, and a new 
instance is presented, described by the tuple of attribute values<a1, a2,…,an>, the learner 
will be asked to predict the target value, or classification, for this new instance. The 
Bayesian approach would be 

 uMAP = Aargmax
vj∈V E

A P(vj|a1, a2, …., an) 

  = Aargmax
vj∈V E

A A

P(a1, a2, …., an|vj)P(vj)
EP(a1, a2, ... an)E

 

  = Aargmax
vj∈V E

A P(a1, a2, …. , an)|vj) P(vj) 

To solve the above equation we need two terms 

 P(vj): Obtained by counting the frequency with which each target value vj 
occurs in the training data. 

 P(a1, a2,…,an|vj): Obtaining this term is very difficult. The problem is that the 
number of these terms is equal to the number of possible instances times the 

Naive Bayes algorithm applies to learning tasks where each instance x is 
described by a conjunction of attribute values and where the target function 
f(x)can take on any value from some finite set V. 
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number of possible target values. Therefore, we need to see every instance in 
the instance space many times in order to obtain reliable estimates. 

To simplify this, Naïve Bayes classifier is used. Here, the attribute values are 
conditionally independent.  

P(a1, a2, …. anvj) = Πi P(aivj) 

Hence, number terms is |distinct attributes| · |distinct target values| + |distinct target 
values| 

The final Naïve Bayes classifier is given as: 
 uNB = Aargmax

Vj∈V E

A Πi P(aivj) 

Example: Use Naïve Bayes theorem to find out the likelihood of playing tennis for 
a given set weather attributes. 

f(x) ∈ v = (yes, no)  i.e. v = (yes we will play tennis, no we will not play tennis) 
The attribute values are a0…a3 = (Outlook, Temperature, Humidity, and Wind). 

TRAINING EXAMPLES 
Day Outlook Temperature Humidity Wind Play Tennis 

1 Sunny Hot High Weak No 
2 Sunny Hot High Strong No 
3 Overcast Hot High Weak Yes 
4 Rain Mild High Weak Yes 
5 Rain Cool Normal Weak Yes 
6 Rain Cool Normal Strong No 
7 Overcast Cool Normal Strong Yes 
8 Sunny Mild High Weak No 
9 Sunny Cool Normal Weak Yes 
10 Rain Mild Normal Weak Yes 
11 Sunny Mild Normal Strong Yes 
12 Overcast Mild High Strong Yes 
13 Overcast Hot Normal Weak Yes 
14 Rain Mild High Strong No 

According to Bayes theorem,  



Machine Learning Techniques  3.19  

 P(h|D) = A

P(Dh) * P(h)
EP(D) E

 

P(Play Tennis|Attributes) = A

P(AttributesPlay Tennis) * P(Play Tennis)
EP(Attributes)E

 

Or 

 P(v|a) = A

P(av) * P(v)
EP(a)E

 

 P(a|v) = P(a0…a3 | v0,1) 
P(a|v) = P(Outlook, Temperature, Humidity, Wind | Play tennis, Don’t Play tennis) 
According to Naïve Bayes, 

P(a0…a3 | vj=0,1) ≈ P(a0|v0) * P(a1|v0) * P(an|v0)≈ P(a0|v1) * P(a1|v1) * P(an|v1) 
or  
P(a0…an | vj) ≈ ∏i P(ai | vj) 
P(outlook = sunny, temperature = cool, humidity = normal, wind = strong | Play 

tennis)  
≈P(outlook = sunny | Play tennis) * P(temperature = cool | Play tennis) * 
P(humidity = normal | Play tennis) * P(wind = strong | Play tennis) 
The probability of observing P(a0…an | vj) is equal the product of probabilities of 

observing the individual attributes.  Using the table of 14 examples we can calculate 
our overall probabilities and conditional probabilities. 

Probability of playing tennis: 

• P(Play Tennis = Yes) = 9/14 = .64 

• P(Play Tennis = No) = 5/14 = .36 

Outlook: 

Sunny 

• P(Outlook = Sunny | Play Tennis = Yes) = 2/9 = .22 

• P(Outlook = Sunny | Play Tennis = No) = 3/5 = .6 

Overcast 

• P(Outlook = Overcast | Play Tennis = Yes) = 4/9 = .44 

• P(Outlook = Overcast | Play Tennis = No) = 0/5 = 0 
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Rain 

• P(Outlook = Rain | Play Tennis = Yes) = 3/9 = .33 

• P(Outlook = Rain | Play Tennis = No) =  2/5 = .4 

Temperature  

Hot 

• P(Temperature = Hot | Play Tennis = Yes) = 2/9 = .22 

• P(Temperature = Hot | Play Tennis = No) = 2/5 = .40 

Mild 

• P(Temperature = Mild | Play Tennis = Yes) = 4/9 = .44 

• P(Temperature = Mild | Play Tennis = No) = 2/5 = .40 

Cool 

• P(Temperature = Cool | Play Tennis = Yes) = 3/9 = .33 

• P(Temperature = Cool | Play Tennis = No) = 1/5 = .20 

Humidity 

High 

• P(Humidity = Hi | Play Tennis = Yes) = 3/9 = .33 
• P(Humidity = Hi | Play Tennis = No) = 4/5 = .80 

Normal 

• P(Humidity = Normal | Play Tennis = Yes) = 6/9 = .66 
• P(Humidity = Normal | Play Tennis = No) = 1/5 = .20 

Wind 

Weak 

• P(Wind = Weak | Play Tennis = Yes) = 6/9 = .66 

• P(Wind = Weak | Play Tennis = No) = 2/5 = .40 

Strong 

• P(Wind = Strong | Play Tennis = Yes) = 3/9 = .33 

• P(Wind = Strong | Play Tennis = No) = 3/5 = .60 

a = (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong) 
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What would our Naïve Bayes classifier predict in terms of playing tennis on a day 
like this? 

i) P(Playtennis = Yes | (Outlook = sunny, Temperature = cool, Humidity = high, 
Wind = strong))   

OR 
ii) P(Playtennis = No | (Outlook = sunny, Temperature = cool, Humidity = high, 

Wind = strong)) 

i) P(Yes|(sunny, cool, high, strong)) = A

P(sunny, cool,E high, strong)|(yes)*P(yes)
P(sunny, cool, high, strong)E

 

                   = A

P(sunny|yes)*P(cool|yes)*P(high|yes) P(strong|yes)*P(yes)
EP((sunny, cool, high, strong)|Yes) + P((sunny, cool, high, strong)|No)E

 

                   = A

(0.22 * 0.33 * 0.33 * 0.33) * 0.64
E(0.22 * 0.33 * 0.33 * 0.33)*64 + (0.6 * 0.2 * 0.8 * 0.6) * 0.36E

 

                   = 0.0051 / (0.0051+0.0207) 
                   = 0 .1977 

ii) P(No|(sunny, cool, high, strong)) = A

P(sunny, cool,E high, strong)|(No)*P(No)
P(sunny, cool, high, strong)E

A  

                                                    = A

0.0207
0.0051 + 0.0207E A  

                                                    = 0 .8023 

Naive Bayes is best when: 

• Moderate or large training set available 
• Attributes that describe instances are conditionally independent given 

classification 

Bayes vs Naive Bayes Classifier 
Bayes Classifier Naive Bayes Classifier 

A Bayesian network is a graphical 
model that represents a set of variables 
and their conditional dependencies. 

Naive Bayes classifier is a technique to 
assign class labels to the samples from the 
available set of labels. 

There need not be any correlation 
between the features. 

This method assumes each feature’s value 
as independent and will not consider any 
correlation or relationship between the 
features 
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Bayes Classifier Naive Bayes Classifier 
It is very difficult to estimate the 
probability of all the features. 

Probability estimation is done only to 
dependent features. 

3.10.   BAYESIAN BELIEF NETWORK 

 

 

 

 

Bayesian belief networks provide an intermediate approach that is less constraining 
than the global assumption of conditional independence made by the naive Bayes 
classifier. This is more tractable than avoiding conditional independence assumptions 
all together. Bayesian networks are a type of probabilistic graphical model comprised 
of nodes and directed edges. Bayesian network models capture both conditionally 
dependent and conditionally independent relationships between random variables. 
Models can be prepared by experts or learned from data, then used for inference to 
estimate the probabilities for causal or subsequent events. 

3.10.1.   Conditional Independence 

Bayesian belief network is a probabilistic graphical model where each node 
represents a random variable or group of random variables, and the links express 
probabilistic relationships between these variables. The prerequisites for developing a 
Bayesian Belief network are: 
 Random Variables 
 Conditional Relationships 
 Probability Distributions 

Consider a problem with three random variables: A, B, and C. A is dependent upon 
B, and C is dependent upon B.  

• A is conditionally dependent upon B, e.g. P(A|B) 
• C is conditionally dependent upon B, e.g. P(C|B) 

It clearly infers that C and A have no effect on each other. The conditional 
independencies can be rewritten as follows: 

A Bayesian belief network describes the probability distribution governing 
a set of variables by specifying a set of conditional independence assumptions 
along with a set of conditional probabilities. 
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• A is conditionally independent from C: P(A|B, C) 
• C is conditionally independent from A: P(C|B, A) 

The conditional dependence is stated in the presence of the conditional 
independence. That is, A is conditionally independent of C, or A is conditionally 
dependent upon B in the presence of C. Also, the conditional independence of A given 
C as the conditional dependence of A given B, as A is unaffected by C and can be 
calculated from A given B alone. 

P(A|C,B)  =  P(A|B) 

B is unaffected by A and C and has no parents; So simply state that the conditional 
independence of B from A and C as: 

P(B,P(A|B), P(C|B))  or  P(B) 

The joint probability of A and C given B or conditioned on B as the product of two 
conditional probabilities: 

P(A ,C|B) = P(A|B) * P(C|B) 

The model summarizes the joint probability of P(A, B, C) calculated as: 
P(A,B,C) = P(A|B)  *  P(C|B)  *  P(B) 

 
Fig. 3.4. Bayesian Belief Network for random variables A, B and C 

The graph in Fig 3.4 is a Bayesian belief network of the random variables A, B and 
C. The variables are each assigned a node, and the conditional probabilities are given as 
directed connections between the nodes. The graph must not form a cycle. 
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Example 

 
Fig. 3.5. Bayesian Belief Network 

• The network in Fig 3.5 represents a set of conditional independence 
assumptions. 

• Each node is asserted to be conditionally independent of its non descendants, 
given its immediate parents.  

• The conditional probability table specifies the conditional distribution for the 
variable given its immediate parents in the graph. 

• Here C denotes campfire, B denotes BusTourGroup and S denotes Storm. 

• The network nodes and arcs represent the assertion that CampJire is 
conditionally independent of its nondescendants Lightning and Thunder, given 
its immediate parents Storm and BusTourGroup.  

• This means that once the values of the variables Storm and BusTourGroup is 
known, then the variables Lightning and Thunder provide no additional 
information about Campfire. 

 S, B S,~B ~S, B ~S,~B 
C 0.4 0.1 0.8 0.2 

~C 0.6 0.9 0.2 0.8 

• This table provides only the conditional probabilities of Campfire given its 
parent variables Storm and BusTourGroup.  

• The set of local conditional probability tables for all the variables, together with 
the set of conditional independence assumptions described by the network, 
describe the full joint probability distribution for the network. 
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3.10.2.   Inferences from Bayesian Belief Network 

• The probability distribution for the target variable, which specifies the 
probability that it will take on each of its possible values given the observed 
values of the other variables 

•  This inference step can be straightforward if values for all of the other variables 
in the network are known exactly.  

• To infer the probability distribution for some variable given observed values for 
only a subset of the other variables is possible in belief networks.  

• A Bayesian network can be used to compute the probability distribution for any  
subset of network variables given the values or distributions for any subset of 
the remaining variables. 

• Exact inference of probabilities in general for an arbitrary Bayesian network is 
known to be NP-hard. 

• Numerous methods have been proposed for probabilistic inference in Bayesian 
networks, including exact inference methods and approximate inference 
methods that sacrifice precision to gain efficiency. 

3.10.3.   Learning Bayesian Networks 

• Learning from Bayesian Networks is very straight forward if: 
 Network structure is known in advance, or can be inferred from the training 

data. 
 All the network variables might be directly observable in each training 

example, or some might be unobservable. 
• The learning problem becomes complicated is the network structure is given but 

only some of the variable values are observable in the training data. 
• This problem is same as learning the weights for the hidden units in an artificial 

neural network, where the input and output node values are given but the hidden 
unit values are left unspecified by the training examples.  

• The gradient ascent procedure can be used that learns the entries in the 
conditional probability tables.  

• This gradient ascent procedure searches through a space of hypotheses that 
corresponds to the set of all possible entries for the conditional probability 
tables.  
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• The objective function that is maximized during gradient ascent is the 
probability P(D|h) of the observed training data D given the hypothesis h.  

• By definition, this corresponds to searching for the maximum likelihood 
hypothesis for the table entries. 

3.10.4.   Gradient Ascent Training of Bayesian Networks 

 

 

 

• Let wijk denote the conditional probability that the network variable Yi will take 
on the value yi, given that its immediate parents Ui take on the values given by 
uik. The gradient is calculated by 

 A

∂InPh(D)
E∂wij E

A = A ∑

d ∈ D
  EAA

P(Yi = yij, Ui = uik|d)
EwijkE

 

• When some of the variables are unobservable for the training example d, the 
required probability can be calculated from the observed variables in d using 
standard Bayesian network inference.  

• These required quantities are easily derived from the calculations performed 
during most Bayesian network inference, so learning can be performed at little 
additional cost whenever the  

• Bayesian network is used for inference and new evidence is subsequently 
obtained. 

 A

∂InPh(D)
E∂wijkE

A = A

∂
∂wijkE

A Πd∈D Ph (d) 

  = A ∑

d ∈ D
  EAA

∂InPh(D)
E∂wijkE

 

  = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

∂InPh(D)
E∂wijkE

 

After introducing parents, 

 A

∂InPh(D)
E∂wijkE

A = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

∂
∂wijkE

A Ph (d |yij, uik) Ph(yij|uik) Ph(uik) 

The gradient ascent rule maximizes P(D|h) by following the gradient of In 
P(D |h) with respect to the parameters that define the conditional probability 
tables of the Bayesian network. 
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 A

∂InPh(D)
E∂wijkE

A = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

∂
∂wijkE

A A ∑

j ′ k ′
  EAPh (d |yij′, uik′) Ph(yij′,uik′) 

  = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

∂
∂wijkE

A A ∑

j ′ k ′
  EAPh (d |yij′, uik′) Ph(yij′|uik′) Ph(uik′) 

wijk= Ph(yij’|uik’)the only term in this sum for which and is nonzero is the term for 
which j' = j and i' = i. 

 A

∂InPh(D)
E∂wijkE

A = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

∂
∂wijkE

A Ph (d |yij, uik) Ph(yij|uik) Ph(uik) 

  = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

∂
∂wijkE

A Ph (d |yij, uik) wijk Ph(uik) 

  = A ∑

d ∈ D
  EAA

1
Ph(d)E

A Ph (d |yij, uik) Ph(uik) 

Applying Bayes theorem,  

 A

∂InPh(D)
E∂wijkE

A = A ∑

d ∈ D
  EAA

1
Ph(d)E

A A

Ph(yij, uik|d)Ph(d) Ph(uik)
EPh(yij, uik)E

 

  = A ∑

d ∈ D
  EAA

Ph(yij,uik|d)Ph(uik)
EPh(yij, uik)E

 

  = A ∑

d ∈ D
  EAA

Ph(yij,uik|d)
EPh(yij|uik)E

 

  = A ∑

d ∈ D
  EAA

Ph(yij,uik|d)
EwijkE

 

Updating each value of wijk, is done by, 

 wijk ← wijk + η A ∑

d ∈ D
  EAA

Ph(yij,uik|d)
EwijkE

 

3.10.5.   Learning the Structure of Bayesian Networks 

• Learning Bayesian networks when the network structure is not known in 
advance is also difficult.  

• A Bayesian scoring metric for choosing among alternative networks and a 
heuristic search algorithm called K2 for learning network structure when the 
data is fully observable. 
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• K2performs a greedy search that trades off network complexity for accuracy 
over the training data.  

• Starting from an initial BN structure, the K2 algorithm searches the BN 
structure space and selects the structure maximizing the K2 metric. 

• K2 algorithm considers the dependence on an initial topological ordering, 
search procedure, and score.  

• By ranking the domain features based on their degree of separability, K2 
algorithm establish an expert-free initial ordering that is both data-driven and 
classification-oriented. 

3.11.   EXPECTATION MAXIMIZATION (EM) ALGORITHM 

 

 

 

 

• Through EM algorithm it is easier to add extra variables that are not actually 
known (called hidden or latent variables) and then to maximise the function 
over those variables.  

• This might seem to be making a problem much more complicated than it needs 
to be, but it turns out for many problems that it makes finding the solution 
significantly easier. 

• Expectation maximization provides an iterative solution to maximum likelihood 
estimation with latent variables. 

• Gaussian mixture models are an approach to density estimation (maximum 
likelihood is a method of density estimation) where the parameters of the 
distributions are fit using the expectation-maximization algorithm. 

• Density estimation involves selecting a probability distribution function and the 
parameters of that distribution that best explain the joint probability distribution 
of the observed data. 

The EM is used in maximum likelihood estimation where the problem 
involves two sets of random variables of which one, X, is observable and the 
other, Z, is hidden. 
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• Maximum Likelihood Estimation involves treating the problem as an 
optimization or search problem, where we seek a set of parameters that results 
in the best fit for the joint probability of the data sample. 

• A limitation of maximum likelihood estimation is that it assumes that the 
dataset is complete, or fully observed. This does not mean that the model has 
access to all data; instead, it assumes that all variables that are relevant to the 
problem are present. 

• The EM algorithm is an iterative approach that cycle between two modes.  

 First mode: attempts to estimate the missing or latent variables, called the 
estimation-step or E-step.  

 Second mode: attempts to optimize the parameters of the model to best 
explain the data, called the maximization-step or M-step. 

• E-Step: Estimate the missing variables in the dataset. 

• M-Step: Maximize the parameters of the model in the presence of the data. 

3.11.1.   Estimating means of k Gaussians 

• A mixture model is a model comprised of an unspecified combination of 
multiple probability distribution functions. 

 

 

 

• Consider the case where a dataset is comprised of many points that happen to be 
generated by two different processes.  

• The points for each process have a Gaussian probability distribution, but the 
data is combined and the distributions are similar enough that it is not obvious 
to which distribution a given point may belong. 

• The processes used to generate the data point represents a latent variable, e.g. 
process 0 and process 1. It influences the data but is not observable.  

• As such, the EM algorithm is an appropriate approach to use to estimate the 
parameters of the distributions. 

The Gaussian Mixture Model (GMM), is a mixture model that uses a 
combination of Gaussian (Normal) probability distributions and requires the 
estimation of the mean and standard deviation parameters for each. 
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• In the EM algorithm, the estimation-step would estimate a value for the process 
latent variable for each data point, and the maximization step would optimize 
the parameters of the probability distributions in an attempt to best capture the 
density of the data. 

• The process is repeated until a good set of latent values and a maximum 
likelihood is achieved that fits the data. 

 
Fig. 3.6. GMM of two distributions 

Maximum likelihood hypothesis for the mean of a single Normal distribution given 
the observed data instances <x1, x2, …,xm> drawn from this single distribution. 

µML = Aargmin
µE

A A ∑

i  = 1
m EA(xi – µ)2 

The sum of squared errors is minimized by the sample mean. 

µML = A

1
mE

A A ∑

i  = 1
m EA(xi – µ)2 

• The triple <xi, zi1, zi2> where xi is the observed value of the ith instance and 
where zi1 and zi2 indicate which of the two Normal distributions was used to 
generate the value x1. 

 

• In particular, zij has the value 1 if xi was created by the jth Normal distribution 
and 0 otherwise.  
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• Here xi is the observed variable in the description of the instance, and zi1 , zi2are 
hidden variables.  

• The EM algorithm first initializes the hypothesis to h = (µ1, µ2), where µ1 and µ2 

are arbitrary initial values.  

• It then iteratively re-estimates h by repeating the following two steps until the 
procedure converges to a stationary value for h. 

Step 1: Calculate the expected value E[zij] of each hidden variable zij, assuming the 
current hypothesis h = (µ1, µ2), holds 

Step 2: Calculate a new maximum likelihood hypothesis h’ = (µ1’, µ2’), holds 
assuming the value taken on by each hidden variable zijis its expected value E[zij] 
calculated in Step 1. Then replace the hypothesis h = (µ1, µ2), by the replace the 
hypothesis h’ = (µ1’, µ2’) and iterate. 

EM algorithm can be applied in the following situations 

• It can be used to fill the missing data in a sample. 

• It can be used as the basis of unsupervised learning of clusters. 

• It can be used for the purpose of estimating the parameters of Hidden Markov 
Model (HMM). 

• It can be used for discovering the values of latent variables. 

Advantages of EM algorithm 

• It is always guaranteed that likelihood will increase with each iteration. 

• The E-step and M-step are often pretty easy for many problems in terms of 
implementation. 

• Solutions to the M-steps often exist in the closed form. 

Disadvantages of EM algorithm  

• It has slow convergence. 

• It makes convergence to the local optima only. 

• It requires both the probabilities, forward and backward (numerical optimization 
requires only forward probability). 
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3.12.   PROBABILITY LEARNING 

Though there are many machine learning algorithms, it is very difficult to set 
quantitative bound son these measures, depending on attributes of the learning problem 
such as: 

• the size or complexity of the hypothesis space considered by the learner 

• the accuracy to which the target concept must be approximated 

• the probability that the learner will output a successful hypothesis 

• the manner in which training examples are presented to the learner 

Learning Models 

The models that dominate the field of machine learning are: 

• Probably Approximately Correct Model (PAC): In this, the data comes from 
some fixed probability distribution over the instance space, labelled by an 
unknown target function.  Assume training data is drawn from this distribution, 
this model is based on how much data do the model need to see so that if it 
performs well over it, then it can do well on new points also. The new points 
must also be drawn from the same distribution as the training data. 

• Mistake Bound (MB) model: Algorithm A has mistake-bound M for learning 
class C if A makes at most M mistakes on any sequence that is consistent with a 
function in C. 

• Consistency model: If class C is learnable in the Mistake Bound model by an 
algorithm A that uses hypotheses in C, then C is learnable in the consistency 
model. The consistency model has the problem that there was nothing in it 
about being able to predict well on new data. 

The learning algorithm must generalize to some extent to arrive the 

• Sample complexity: The number of training examples needed for the learner to 
converge to a successful hypothesis. 

• Computational complexity: The computational effort for a learner to converge 
to a successful hypothesis. 
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• Mistake bound: The number of training examples can the learner allowed to 
misclassify before converging to a successful hypothesis. 

• Given a continuous stream of examples where the learner predicts whether each 
one is a member of the concept or not and is then is told the correct answer, 
does the learner eventually converge to a correct concept and never make a 
mistake again. 

• No limit on the number of examples required or computational demands, but 
must eventually learn the concept exactly, although do not need to explicitly 
recognize this convergence point. 

• By simple enumeration, concepts from any known finite hypothesis space are 
learnable in the limit, although typically requires an exponential number of 
examples and time. 

• Class of total recursive functions is not learnable in the limit. 

• The learner L considers some set H of possible hypotheses when attempting to 
learn the target concept. 

• After observing a sequence of training examples of the target concept c, L must 
output some hypothesis h from H, which is its estimate of c.  

• To be fair, we evaluate the success of L by the performance of h over new 
instances drawn randomly from X according to D, the same probability 
distribution used to generate the training data. 

• Within this setting, we are interested in characterizing the performance of 
various learners L using various hypothesis spaces H, when learning individual 
target concepts drawn from various classes C.  

• Because we demand that L be general enough to learn any target concept from 
C regardless of the distribution of training examples, we will often be interested 
in worst-case analyses over all possible target concepts from C and all possible 
instance distributions D. 
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3.12.1.   Error of the hypothesis 

• The true error of h is just the error rate expected when applying h to future 
instances drawn according to the probability distribution. 

 

 

 

 

 

• The concepts c and h are depicted by the sets of instances within X that they 
label as positive. The error of h with respect to c is the probability that a 
randomly drawn instance will fall into the region where h and c disagree (i.e., 
their set difference). 

• Define error over the entire distribution of instances-not simply over the training 
examples-because this is the true error we expect to encounter when actually 
using the learned hypothesis h on subsequent instances drawn from D. 

• The error depends strongly on the unknown probability distribution. 

The true error of hypothesis h with respect to target concept c and 
distribution D is the probability that h will misclassify an instance drawn at 
random according to D.  

errorD(h) = Pr
x∈D

 [c(x) ≠ h(x)] 

The probably approximately correct (PAC) learning is a framework for 
mathematical analysis of machine learning. The learner receives samples 
and must select a generalization function or the hypothesis from a certain 
class of possible functions. The goal is that, with high probability the selected 
function will have low generalization error. The learner must be able to 
learn the concept given any arbitrary approximation ratio, probability of 
success, or distribution of the samples. 
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Fig. 3.7. Relation of target concept and hypothesis 

• The error of h with respect to c is the probability that a randomly drawn instance 
will fall into the region where h and c disagree on its classification.  

• The + and - points indicate positive and negative training examples.  

• The h has a nonzero error with respect to c despite the fact that h and c agree on 
all five training examples observed thus far. 

• The same h and c will have a much higher error if D happens to assign very 
high probability to instances for which h and c disagree. 

• In the extreme, if V happens to assign zero probability to the instances for 
which h(x) = c(x) then the error for the h will be 1. 

• The error of h with respect to c is not directly observable to the learner. L can 
only observe the performance of h over the training examples, and it must 
choose its output hypothesis on this basis only. 

• Training error refers to the fraction of training examples misclassified by h. 

3.12.2.   PAC Learnability 

• PAC characterizes classes of target concepts that can be reliably learned from a 
reasonable number of randomly drawn training examples and a reasonable 
amount of computation. 

• This characterization is done based on the number of training examples needed 
to learn a hypothesis h for which error is 0.  

• This is infeasible because: 
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 There may be multiple hypotheses consistent with the provided training 
examples, and the learner cannot be certain to pick the one corresponding to 
the target concept. 

 Given that the training examples are drawn randomly, there will always be 
some nonzero probability that the training examples encountered by the 
learner will be misleading.  

• To overcome these difficulties: 

 The learner need not output a zero error hypothesis but with the error be 
bounded by some constant, c, that can be made arbitrarily small.  

 It is not required that the learner succeed for every sequence of randomly 
drawn training examples but will require only that its probability of failure 
be bounded by some constant, that can be made arbitrarily small.  

• The direct implication is that the learner is required to learn a probable 
hypothesis that is approximately correct-hence the term probably approximately 
correct learning, or PAC learning for short. 

• Consider some class C of possible target concepts and a learner L using 
hypothesis space H.  

• Loosely speaking, we will say that the concept class C is PAC-learnable by L 
using H if, for any target concept c in C, L will with probability output a 
hypothesis h with error(h) < c, after observing a reasonable number of training 
examples and performing a reasonable amount of computation.  

• PAC is concerned only with the computational resources required for learning, 
the number of training examples required.  

• If L, a learner requires some minimum processing time per training example, 
then for C to be PAC-learnable by L, L must learn from a polynomial number of 
training examples.  

• To show that some class C of target concepts is PAC-learnable, first show that 
each target concept in C can be learned from a polynomial number of training 
example sand then show that the processing time per example is also 
polynomial bounded. 



Machine Learning Techniques  3.37  

3.13.   SAMPLE COMPLEXITY FOR FINITE HYPOTHESIS SPACE 

• PAC-learnability is largely determined by the number of training examples 
required by the learner.  

• The growth in the number of required training examples with problem size, 
called the sample complexity of the learning problem, is the characteristic that is 
usually of greatest interest.  

• The reason is that in most practical settings the factor that most limits success of 
the learner is the limited availability of training data. 

• A general bound on the sample complexity for a very broad class of learners is 
called consistent learners. 

• A learner is consistent if it outputs hypotheses that perfectly fit the training data, 
whenever possible.  

• A learning algorithm is said to be consistent, if there is a hypothesis that fits the 
training data. 

• A bound on the number of training examples required by any consistent learner, 
independent of the specific algorithm it uses to derive a consistent hypothesis is 
given by: 

VSH, D = {h ∈ H | (∀〈x, c(x)〉 ∈ D) (h(x) = c(x))} 

Where VSH,D to be the set of all hypotheses hεH that correctly classify the training 
examples D. 

• The significance of the version space here is that every consistent learner 
outputs a hypothesis belonging to the version space, regardless of the instance 
space X, hypothesis space H, or training data D.  

• The version space contains no unacceptable hypotheses. 
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Fig. 3.8. Exhausting the version space 

ε-exhausting the version space: If the hypothesis space H is finite and D is a 
sequence of m>=1 independently random samples of some target concept c, then for 
any 0<=ε<=1, the probability that the version space VS H,D is not ε-exhausted is less 
than or equal to 

H e–∈m 

Where e is the error. 

• A subset of the version space has zero training error. But the real error returned 
may be higher even for the hypothesis that commits zero errors for training data. 

• The number of training examples required to reduce this probability of failure 
below some desired level δ is given by: 

H e–∈m ≤ δ 

Where m is the number of training examples Rearranging, 

m ≥ A

1
∈ E

A (ln H  + ln(1/δ)) 

• This equation provides a general bound on the number of training examples (m) 
sufficient for any consistent learner to successfully learn any target concept in 
H, for any desired values of ε and δ. 

• m grows linearly in 1/ε and logarithmically in 1/δ. 
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3.13.1.   Agnostic Learning and Inconsistent Hypotheses 

• Agnostic learning makes virtually no assumptions on the target function. 

• This deals with how many training examples suffice to ensure (with probability 
(1 - δ)) that every hypothesis in H having zero training error will have a true 
error of at most ε. 

• If H does not contain the target concept c, then a zero-error hypothesis cannot 
always be found. 

• The task of our learner is to output the hypothesis from H that has the minimum 
error over the training examples.  

• A learner that makes no assumption that the target concept is represent able by 
H and that simply finds the hypothesis with minimum training error, is called an 
agnostic learner, because it makes no prior commitment about whether or not  
C ⊆ H. 

• Let errorD(h) denote the training error of hypothesis h. 

• Training error is defined as the fraction of the training examples in D that are 
misclassified by h.  

• It is evident that the training error over the particular sample of training data D 
may differ from the true error over the entire probability distribution. 

• hbest denote the hypothesis from H having lowest training error over the training 
examples.  

• The Hoeffding bounds characterize the deviation between the true probability of 
some event and its observed frequency over m independent trials. This states 
that if the training error, errorD(h) is measured over the set D containing m 
randomly drawn examples, then 

Pr[errorD(h) > errorD(h) + ∈)] ≤ He–2m∈2 

• This gives us a bound on the probability that an arbitrarily chosen single 
hypothesis has a very misleading training error. To assure that the best 
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hypothesis found by L has an error bounded in this way, consider the 
probability that any one of the |H| hypotheses could have a large error 

Pr[(∃h ∈ H) (errorB(h) > errorD(h) + ∈)] ≤ He–2m∈2 

• When the probability δ, and ask how many examples m suffice to hold δ to 
some desired value 

m ≥ A

1
2ε2E

A A


 

AE

 
ElnH + ln EA







A

1
δ AE AA


 
AE

 
 

3.13.2.   Conjunctions of Boolean Literals Are PAC-Learnable 

The class C of target concepts can be described by conjunctions of Boolean literals. 
A boolean literal is any boolean variable or its negation. The sample complexity of 
learning conjunctions of up to n boolean literals. 

m ≥ A

1
∈ E

A (n  ln3 + ln(1/δ)) 

m grows linearly in the number of literals n, linearly in 1/ε, and logarithmically in 
1/δ. 

3.14.   SAMPLE COMPLEXITY FOR INFINITE HYPOTHESIS SPACES 

There are two limitations in expressing the complexity in term of H: 

 It can lead to quite weak bounds. 

 This is not applicable to infinite hypothesis 

A set of instances S is shattered by hypothesis space H if and only if for every 
dichotomy of S there exists some hypothesis in H consistent with this dichotomy. If a 
set of instances is not shattered by a hypothesis space, then there must be some concept 
(dichotomy) that can be defined over the instances, but that cannot be represented by 
the hypothesis space. The ability of H to shatter a set of instances is thus a measure of 
its capacity to represent target concepts defined over these instances. 
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Fig. 3.9. A set of three instances shattered by eight hypotheses 

A subset S of instances of a set X is shattered by a collection of function F if  
∀ S'⊆ S there is a function f∈ F such data: 

f(x) = A




 
1    x∈S
0   x ∈ S – S′

E 

Shattering sets of points 

• A configuration of N points on the plane is just any placement of N points.  

• In order to have a VC dimension of at least N, a classifier must be able to 
shatter a single configuration of N points.  

• In order to shatter a configuration of points, the classifier must be able to, for 
every possible assignment of positive and negative for the points, perfectly 
partition the plane such that the positive points are separated from the negative 
points.  

• For a configuration of N points, there are 2^N possible assignments of positive 
or negative, so the classifier must be able to properly separate the points in each 
of these. 

3.14.1.   Vapnik-Chervonenkis (VC) Dimension 

• This is derived from computational learning theory that is used to formally 
quantify the power of a classification algorithm. 
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• The VC dimension of a classifier is defined by Vapnik and Chervonenkis to be 
the cardinality (size) of the largest set of points that the classification algorithm 
can shatter. 

 

 

 

 
For any finite H, VC(H) ≤ log2 H 

 

Fig. 3.10. a) VC(H) depicting the X and H for shattering 

  
Fig 3.10 b) Set of points that can be 

shattered 
Fig 3.10 c) Set of points that cannot be 

shattered 

Upper bound on sample complexity 

Earlier we considered the question “How many randomly drawn training examples 
suffice to probably approximately learn any target concept tin C?”(i.e., how many 

The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space Hdefined 
over instance space X is the size of the largest finite subset of X shattered by H. 

If arbitrarily large finite sets of X can be shattered by H, then VC(H) = ∞ 
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examples suffice to ∈ - exhaust the version space with probability (1 – δ)?). Using 
VC(H) as a measure for the complexity of H, it is possible to derive an alternative 
answer to this question. This new bound (see Blumer et al. 1989) is  

m ≥ A

1
∈ E

A A


 

AE

 
E4log2 A

2
δE

A + 8VC (H) log2 EA







A

13
∈ AE AA


 
AE

 
 

Then with probability (1 – δ), 
errorD(h) ≤ ∈ 

Lower bound on complexity 

Consider any concept class C such that VC(C) ≥ 2, any learner L, and any 0 < ∈ < A

1
δE

A 

and 0 < δ < A

1
100E

A. Then there exists a distribution D and target concept in C such that L 

observes fewer examples than  

max A


 

AE

 
EA

1
∈ E

A log A

1
δE

A, A

VC(C) – 1
E32∈ E

AA


 
AE

 
 

Then with probability at least δ, L outputs a hypothesis h having errorD(h) ≤ ∈ 

Example: 

Choose 4-point set, which can be shattered in all possible ways. Given such 4 points, 
we assign them the {+,-} labels, in all possible ways. For each labelling it must exist a 
rectangle which produces such assignment, i.e. such classification.  

Classifier: Points inside the rectangle is positive and outside is negative examples  

Given 4 points (linearly independent),  

a) All points are “+” ⇒ use a rectangle that includes them 

b) All points are “-” ⇒ use a empty rectangle 

c) 3 points “-” and 1 “+” ⇒ use a rectangle centered on the “+” points 

d) 3 points “+” and one “-” ⇒ we can always find a rectangle which exclude the “-
” points 

e) 2 points “+” and 2 points “-” ⇒ we can define a rectangle which includes the 2 
“+” and excludes the 2 “-”. 
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Fig. 3.11. Illustration of the example 

• For any 5-point set, we can define a rectangle which has the most extern points 
as vertices.  

• If we assign to such vertices the “+” label and to the internal point the “-” label, 
there will not be any rectangle which reproduces such assignment. 

3.14.2.   VC Dimension for Neural Networks 

• The VC dimension of layered acyclic network is decided based on the structure 
of the network and the VC dimension of its individual units.  

• This VC dimension can then be used to bound the number of training examples 
sufficient to probably approximately correctly learn a feed forward network to 
desired values of εandδ.  

• Neural networks are considered as Direct Acyclic Graphs. A directed acyclic 
graph is one for which the edges have a direction, and in which there are no 
directed cycles. 

• A layered graph is one whose nodes can be partitioned into layers such that all 
directed edges from nodes at layer n go to nodes at layer n + 1.  

• To generalise the VC dimension, consider the neural network with n number of 
nodes and the neural network with only one output node is represented using the 
direct acyclic graph, G. 
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• Let Ni be the internal units of G with almost r inputs and implements Boolean 
function that takes only two values {0, 1} for some function class C. 

• The G-composition of C is the class of all functions that can be implemented by 
the network G. The individual units of G follow the function class C. 

• In other words, The G- composition of C is the hypothesis space of the network 
G. 

 

 

 

 

 
The complexity of the network G grows linearly with the VC dimension d of its 

individual units and log times linear in s which is the number of threshold units in the 
network. To bound the VC dimension of acyclic layered networks containing s 
perceptrons each with r inputs: 

VC(CA

perceptrons
AEG E) ≤ 2(r + 1)s log ( ) 

3.15.   MISTAKE BOUND (MB) MODEL 

In the MB model, learning is in stages. In each stage: 
1. The learner gets an unlabeled example. 
2. The learner predicts its classification. 

3. The learner is told the correct label. 

The goal of Mistake bound model is the total number of mistakes that the model is 
allowed to make. 

 

 

 

In mistake bound model, the learner is evaluated by the total number of mistakes it 
makes before it converges to the correct hypothesis. 

 

 

Let G be the layered directed acyclic graph (neural networks) with n input 
nodes and s> = 2 internal nodes, each having almost r inputs. Let C be a 
concept class of VC dimension d and CG be the G-composition of C that are 
the set of functions represented by G. Then the VC dimension of G is given 
by: VC(CG) ≤ 2ds log (es) where e is the base of the natural algorithm. 

Algorithm A has mistake-bound M for learning class C if A makes at most M 
mistakes on any sequence that is consistent with a function in C. 
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3.15.1.   Mistakes in Halving Algorithm 

• Halving Algorithm: This predicts using majority vote over all concepts in C 
consistent with past data 

• Each mistake of halving algorithm cuts down the number of available concepts 
in half (or more).  So, it makes at most log|C| mistakes. 

• The steps in halving algorithm are: 

1. Initialize V to C. (V is called the version space.) 

2. Given example x, predict according to the majority of the concepts in V. 

3. Remove from V all the concepts in C that predicted wrongly. 

4. Return to step 2. 

• Since with each mistake at least half of the version space V is removed, the 
number of mistakes is bounded by log |C|. 

• Storing V and predicting according to the majority of the concepts in V is likely 
to be hard. 

• Each mistake reduces the size of the version space by at least half, and given 
that the initial version space contains only |H| members, the maximum number 
of mistakes possible before the version space contains just one member is 
log2|H|.  

3.15.2.   Mistake Bound for the FIND-S Algorithm 

Consider the learning task where the: 

• training instances are represented by n Boolean features 

• target concept is conjunction of up to n Boolean (negated) literals 

FIND-S for Boolean literals 
Initialize h to the most specific hypothesis  
x1 ∧ ˹x1 ∧ x2 ∧ ˹x2 ∧ … … … xn ∧˹ xn 

for each positive training instance x  
 remove from h any literal that is not satisfied by x 
output hypothesis h 

• The Find-S converges to a hypothesis that does not make any errors. 
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• The Find-S begins its course by choosing the most specific hypothesis and then 
incrementally generalizes the hypothesis to train more positive examples. 

• FIND-S can never mistakenly classify a negative example as positive.  

• The reason is that its current hypothesis h is always at least as specific as the 
target concept. So count the number of mistakes it will make misclassifying 
truly positive examples as negative. 

• The total number of mistakes are bound can be at most n +1. 

3.15.3.   Optimal mistake bounds 

• Optimal mistake bound is the lowest worst-case mistake bound over all possible 
learning algorithms. 

• Let MA(C) be the maximum number of mistakes done by the training algorithm 
A to learn a target concept C. 

MA(C) ≡ maxc∈CMA(C) 

 
 

 

• In case of Halving algorithm, this becomes 
MHalving(C) ≤ log2(C) 

• For Find-S algorithm the optimal mistake bound is: 
MFind – S (C) = n  + 1 

• The comparative relationship among the optimal mistake bound for C for 
various algorithms is given by: 

VC(C) ≤ Opt(C) ≤ MHalving (C) ≤ log2(C) 

3.15.4.    Weighted Majority Algorithm 

• The weighted majority algorithm is an ensemble method: way to combine the 
advice from several other algorithms or hypotheses called as experts. 

• This is a generalization of halving algorithm. 

The optimal mistake bound for C is the minimum overall possible learning 
algorithms A of MA(C). Opt (C) ≡ min

A ∈ learning algorithms
 MA(C) 
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• The predictions made by weighted majority is by taking a weighted vote among 
a pool of prediction algorithms and learns by altering the weight associated with 
each prediction algorithm.  

• These prediction algorithms can be taken to be the alternative hypotheses in H, 
or they can be taken to be alternative learning algorithms that themselves vary 
over time. 

• Two important properties of weighted majority algorithm are: 

 it can accommodate inconsistent training data. This is because it does not 
eliminate a hypothesis that is found to be inconsistent with some training 
example, but rather reduces its weight. 

 The mistakes can be bounded by the terms of the number of mistakes 
committed by the best of the pool of prediction algorithms. 

• The weighted majority algorithm initially assigns an equal weight of 1 to all 
experts. 

• On each round, it ask all the experts for their predictions, and sum up the 
weights for each of the two possible predictions, "positive" or "negative".  

• Then it outputs the prediction that has the higher weight. 

Weighted Majority Algorithm 
// ai denotes the ith prediction algorithm in the pool A of algorithms. Wi denotes the 
weight associated with ai 

For all I initialize wi←1 
For each training example (x, c(x)) 
Initialize q0and q1to 0 
For each prediction algorithm ai 

If ai(x) =0then qo←q0 +wi 

                   If ai(x) =1 then qo←q1 +wi 

If q1>q0then predict c(x) = 1 
If q1<q0then predict c(x) = 0 
      If q1= q0 then predict 0 or 1 at random for c(x) 
For each prediction algorithm ai in A do 
        If ai(x) ≠ c(x) then wi ← βwi 
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• Whenever a prediction algorithm misclassifies a new training example its 
weight is decreased by multiplying it by some numberβ, where 0 < β < 1 

• When β = 0, then this algorithm is same as halving algorithm. 

• When β is given some value, then algorithm will ever be eliminated completely.  

• If an algorithm misclassifies a training example, it will simply receive a smaller 
vote in the future. 

 
The number of mistakes over the D (sequence of training examples) made 

by weighted majority algorithm when β = 0.5 is almost 2.4 (k + log2n). This is 
the relative mistake bound for weighted majority algorithm. 



 

INSTANT BASED LEARNING 

4.1.   INTRODUCTION TO INSTANCE BASED LEARNING 

Memory based learning or Instance based learning is a supervised classification 
learning algorithm that performs operation after comparing the current instances with 
the previously trained instances, which have been stored in memory. It creates 
assumption from the training data instances. The time complexity of Instance based 
learning algorithm depends upon the size of training data. 

The stored training instances themselves represent the knowledge. Each time a new 
query instance is encountered, its relationship to the previously stored examples is 
examined in order to assign a target function value for the new instance. This is also 
known as lazy learning.  

The distinguishing feature of instance-based approach is that it can construct a 
different approximation to the target function for each distinct query instance that must 
be classified. 

Differences between instance based and model based learning 
Instance based learning Model based learning 

No parameter tuning. Parameters can be tuned. 
The system is normally hard coded 
with priors in form of fixed weights 

These parameters with optimal settings are 
supposed to model the problem as accurately 
as possible thus learning is not simply about 
memorization but rather more about searching 
for those optimal parameters. 

Instance-based learning is just about 
storing the training data instances. 
Though the training data itself can be 

The model infers which actions to take in that 
environment that lead to desired outcomes in 
order to achieve a given goal. 

UNIT 
4 
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preprocessed in many ways and 
stored in memory. 
The cost of classifying new instances 
can be high. 

The cost of classifying new instances is 
relatively low. 

Advantages of instance based learning: 
• Lazy approach is suitable when the examples are not all available from the 

beginning but are collected on-line.  
• Lazy learning does not suffer from data interference. That is, acquiring 

examples about an operating regime does not degrade modelling performance 
about others. 

Disadvantages of Instance based algorithms: 
• The cost of classifying new instances can be high. This is because nearly all 

computation takes place at classification time rather than when the training 
examples are first encountered. Therefore, techniques for efficiently indexing 
training examples are a significant practical issue in reducing the computation 
required at query time. 

• They consider all attributes of the instances when attempting to retrieve similar 
training examples from memory. If the target concept depends on only a few of 
the many available attributes, then the instances that are truly most "similar" 
may well be a large distance apart. 

4.2.   K-NEAREST NEIGHBOUR (K-NN) 

K-NN is an non parametric, unsupervised learning algorithm, that tries to learn a 
function that allows to make predictions with some new unlabeled data. An 
unsupervised learning strategy tries to learn the basic structure of the data by gaining 
more insight into the data. The KNN algorithm assumes that similar things exist in 
close proximity. It works on the assumption that similar things are generally near to 
each other. 

The main advantages of k-NN are: 

 Ease to interpret the output 

 Less calculation time 

 More Predictive Power 
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 Highly effective inductive inference method for many practical problems.  

 Smooth out the impact of isolated noisy training examples. 

• K-NN or k-NN algorithm assumes the similarity between the new case/data and 
available cases and put the new case into the category that is most similar to the 
available categories. 

• K-NN algorithm stores all the available data and classifies a new data point 
based on the similarity. This means when new data appears then it can be easily 
classified into a well suite category by using K- NN algorithm. 

• K-NN algorithm can be used for Regression as well as for Classification but 
mostly it is used for the Classification problems. 

• K-NN is a non-parametric algorithm, which means it does not make any 
assumption on underlying data. 

• It is also called a lazy learner algorithm because it does not learn from the 
training set immediately instead it stores the dataset and at the time of 
classification, it performs an action on the dataset. 

• KNN algorithm at the training phase just stores the dataset and when it gets new 
data, then it classifies that data into a category that is much similar to the new 
data. 

• An arbitrary instance x be described by the feature vector 
〈a1(x), a2(x), … an(x)〉 

Where ar (x) denotes the value of the rth attribute of instance x.  

• Then the distance between two instances xi and xj is defined to be d(xi, xi), 
where 

d(xi, xj) ≡ EA A ∑
r  = 1

n
 A(ar(xi) – ar(xj))2E

A  

• The target function of k-NN may be real or discrete valued.  

Algorithm for K-Nearest Neighbours 
Training algorithm: 
       For each training example (x, f(x)) add the example to the list training_examples 
Classification algorithm: 
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 Given a query instance xq to be classified, 
  Let x1, x2, x3,…, xk denotes  the k instances from training_examples that are 
nearest  
                                                    to xq 

              return 

 A f̂ E

A (xq) ← Aargmax
v ∈ VE

A A ∑

i  = 1
k EAδ(v , f (xi)) 

                Where δ(a, b) = 1 if a = b and where δ(a, b) = 0 otherwise 

• In the above algorithm, the instances are points in a two-dimensional space and 
where the target function is boolean valued.  

• The positive and negative training examples are shown by "+" and "-
"respectively. 

  
Fig. 4.1. a) Examples for k-NN Fig 4.1b) Decision surface for Fig 4.1a) 

• The fig 4.1 shows a set of positive and negative training examples is shown on 
the left, along with a query instance xq that is to be classified. 

• On the right is the decision surface induced by the 1-NN (k = 1) for a typical set 
of training examples.  

• The convex polygon surrounding each training example indicates the region of 
instance space closest to that point. 

• The decision surface is a combination of convex polyhedra surrounding each of 
the training examples.  
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• For every training example, the polyhedron indicates the set of query points 
whose classification will be completely determined by that training example.  

• Query points outside the polyhedron are closer to some other training example. 
This kind of diagram is called the Voronoi diagram of the set of training 
examples. 

 

 

 

 

• The k-NN never forms an explicit general hypothesis f regarding the target 
function. 

• It simply computes the classification of each new query instance as and when 
needed. 

• The given algorithm computes discrete valued target. To compute real valued 
target, change the last line of algorithm as: 

A f̂ E

A (xq) ← EA

A ∑
i  = 1

k
 Af (xi)

Ek E

 

4.2.1.   Distance Weighted Nearest Neighbour Algorithm 

Another variation of k-NN is to weight the contribution of each of the k neighbors 
according to their distance to the query point xq, giving greater weight to closer 
neighbors. The last line of the algorithm can be modified as: 

A f̂ E

A (xq) ← Aargmax
v ∈ VE

A A ∑

i  = 1
k EAωi δ(v , f (xi)) 

Where, 

ωi ≡ A

1
d(xq, xi)2E

 

To computer the instances for real-valued target functions in a similar fashion, 
replacing the final line of the algorithm in this case by: 

The partitioning of a plane with n points into convex polygons such that 
each polygon contains exactly one generating point and every point in a 
given polygon is closer to its generating point than to any other. This is 
called Voronoi diagram. 
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A f̂ E

A (xq) ← EEA

A ∑
i  = 1

k
 Aωi f (xi)

E A ∑
i  = 1

k
 Aωi E

 

• All the above variants of the k-NN consider only the k nearest neighbors to 
classify the query point.  

• Once new distance weighting is added, there is really no harm in allowing all 
training examples to have an influence on the classification of the xq, because 
very distant examples will have very little effect on f(xq).  

• The disadvantage of considering all examples is that the classifier will run more 
slowly.  

• If all training examples are considered when classifying a new query instance, 
then the algorithm follows a global method. 

• Since only the nearest training examples are considered, K-NN follows local 
method. 

Limitations of K-NN: 

• The distance between neighbors will be dominated by the large number of 
irrelevant attributes. 

• Algorithm delays all processing until a new query is received, significant 
computation can be required to process each new query. Hence memory 
indexing is needed. 

• Does not work well with large dataset: In large datasets, the cost of 
calculating the distance between the new point and each existing points is huge 
which degrades the performance of the algorithm. 

• Does not work well with high dimensions: The KNN algorithm doesn't work 
well with high dimensional data because with large number of dimensions, it 
becomes difficult for the algorithm to calculate the distance in each dimension. 

• Need feature scaling: Standardization and normalization is needed before 
applying KNN algorithm to any dataset. 

• Sensitive to noisy data, missing values and outliers 
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Example:  

The steps to classify the target using k-NN are: 

1. Determine the parameter k (number of nearest neighbors). 

2. Calculate the distance between the query instance and all the training samples. 

3. Sort the distance and find the nearest neighbors based on the kth minimum 
distance. 

4. Collect the category of nearest neighbors 

5. Use majority of the category of the nearest neighbors as the prediction value of 
the query instance. 

Find the quality of the paper as good or bad based on the features = {acid durability, 
strength}.  

X1 = Acid durability 
 ( seconds) 

X2 = Strength (kg/ square 
meter) 

Y = classification 
result 

7 7 Bad 
7 4 Bad 
3 4 Good 
1 4 good 

Test whether the paper with features = {3, 7} as good/ bad using k-NN. 

1. Let us assume k = 3  

2. Calculate the distance between the query instance and all the training samples. 
Xq = {3, 7} 

X1 = Acid durability  
( seconds) 

X2 = Strength (kg/ square 
meter) 

Squared distance to 
xq 

7 7 (7-3)2+(7-7)2 = 16 
7 4 25 
3 4 9 
1 4 13 

3. Sort the distance and find the nearest neighbors based on minimum distance. If 
the rank or position after sorting is greater than k value, then exclude the 



 4.8   Instant Based Learning 

example from further processing. Hence the example in second row is not 
considered since its rank > 3.  

X1 = Acid 
durability  
( seconds) 

X2 = Strength (kg/ 
square meter) 

Squared 
distance to 

xq 

Sort the 
minimum 
distance 

Is it included 
in 3-NN 

7 7 (7-3)2+(7-7)2 

= 16 
3 Yes 

7 4 25 4 No 
3 4 9 1 Yes 

1 4 13 2 Yes 

4. Collect the category of nearest neighbors 
X1 = Acid 
durability  
(seconds) 

X2 = Strength 
(kg/ square 

meter) 

Squared 
distance 

to xq 

Sort the 
minimum 
distance 

Is it 
included 
in 3-NN 

Y-Category 
of Nearest 
neighbor 

7 7 (7–3)2 + 
(7–7)2 = 

16 

3 Yes Bad 

7 4 25 4 No - 
3 4 9 1 Yes Good 
1 4 13 2 Yes Good 

5. Use majority of the category of the nearest neighbors as the prediction value of 
the query instance. 

From the table, we have two results as good and one as bad. Hence the paper 
represented by xq (X1 = 3, X2 = 7) can be included in Good category. 

4.3.    LOCALLY WEIGHTED REGRESSION 

 

 

 

 

Locally weighted regression constructs an explicit approximation to f 
over a local region surrounding xq. Locally weight edregression uses 
nearby or distance-weighted training examples to form this local 
approximation to f. 
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• It is a non-parametric regression method hat combine multiple regression 
models in a k-nearest-neighbor-based meta-model. 

• They address situations in which the classical procedures do not perform well or 
cannot be effectively applied. 

• This combines the simplicity of linear least squares regression with the 
flexibility of nonlinear regression.  

• It does this by fitting simple models to localized subsets of the data to build up a 
function that describes the variation in the data, point by point.  

• The dissemination of the name "locally weighted regression" infers loads of 
information: 

 Local-the function is approximated based a only on data near the query 
point, weighted because the contribution of each training example is 
weighted by its distance from the query point 

 Regression -the term used widely in the statistical learning community for 
the problem of approximating real-valued functions. 

• Locally weighted regression uses nearby or distance-weighted training 
examples to form this local approximation to f. 

• Given a new query instance xq, the general approach in locally weighted 
regression is to construct an approximation f̂ that fits the training examples in 
the neighborhood surrounding xq. 

• This approximation is then used to calculate the value f̂ (xq), which is output as 
the estimated target value for the query instance. 

• The description of f̂ may then be deleted, because a different local 
approximation will be calculated for each distinct query instance. 

4.3.1.   Locally Weighted Linear Regression 

The target function of the locally weighted regression is of the form: 

A f̂ E

A (x) = ω0 + ω1a1(x) + … + ωn an(x) 

Gradient descent uses coefficients to minimize the squared error function over 
training examples D.  
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E ≡ A

1
2E

A A ∑

x ∈  D
  E A (f (x) – A f̂ E

A(x))2 

This leads to the gradient descent rule: 

∆ωj = η A ∑

x ∈  D
  E A (f (x) – A f̂ E

A(x)) aj(x) 

This rule has to be modified to achieve local error at query point xq. Three ways of 
modifications are currently in practise: 

1. Minimise the squared error in K-NN 
2. Minimize the squared error over the entire set D of training examples, while 

weighting the error of each training example by some decreasing function K of 
its distance from xq. 

E2(xq) ≡ A

1
2E

A A ∑

x ∈  D
  E A (f (x) – A f̂ E

A(x))2 K(d(xq, x)) 

3. Combine both methods. 
The above mention strategies minimize the errors. These do not involve complex 

functional transformations since: 
• Cost of fitting more complex functions for each query instance is prohibitively 

high, 
• The simple approximations model the target function quite well over a 

sufficiently small sub region of the instance space. 

 

 
Fig. 4.2. a) Line fitting Linear regression Fig 4.2 b) Locally weighted linear regression 
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• The aim of locally weighted linear regression is that the Y values of 
neighbouring X values are the best indicators of what the Y value should be at a 
given X value.  

• Two factors must be taken into consideration: 

 decide on the number of X values to be considered 

 Assigning weights to Y values that correspond to neighbouring X values 

• Fit a line to a bivariate scatter of points in a series of iterations using the 
following procedure: 

 Decides how smooth the fitted relationship should be by deciding on the 
number of adjacent points (q) to be used in the estimation procedure; the 
greater the number, the smoother will be the fitted line.  

 Each point to be used is then given a neighbourhood weight in relation to 
its distance from the focal point (xi).  

 A simple linear regression is then fitted to each of the q values for a given 
focal point by weighted least squares, and an estimate i is computed for the 
focal point.  

 The procedure is repeated until all n points have estimated (fitted) Y values.  

 Ordinary residuals are then calculated from the difference between 
observed and fitted values, and robustness weights calculated.  

 A further weighted least squares regression is then run using the product of 
the neighbourhood and robustness weights.  

 The procedure is repeated until there is little or no change in the final fitted 
line. 

4.4.   RADIAL BASIS FUNCTIONS (RBF) 

 

 

 

 

Radial basis functions are means to approximate multivariable functions by 
linear combinations of terms based on a single univariate function (the radial 
basis function). 



 4.12   Instant Based Learning 

• These functions are radialised so that in can be used in more than one 
dimension.  

• They are usually applied to approximate functions or data which are only 
known at a finite number of points so that then evaluations of the approximating 
function can take place often and efficiently 

• They uses a series of basis functions that are symmetric and centered at each 
sampling point.  

• The main feature of these functions is that their response decreases, or 
increases, monotonically with distance from a central point. 

• They transforms the input signal into another form, which can be then feed into 
the network to get linear separability. 

• Radial basis function networks provide a global approximation to the target 
function, represented by a linear combination of many local kernel functions.  

• The value for any given kernel function is non-negligible only when the input x 
falls into the region defined by its particular center and width.  

• Thus, the network can be viewed as a smooth linear combination of many local 
approximations to the target function.  

 
Fig. 4.3.Radial distance and radial basis function 
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• The general function is of the form 

A f̂ E

A(x) = ω0 + A ∑

u  = 1
k EAωu Ku (d(xu, x)) 

xu - instance from X 

Ku(d(xu, x)) - kernel function 

d(xu, x)-distance between two points xu and x 
• The kernel function decreases as the distance between two points increases.  
• The kernel function is localised to a region nearby the point xu. 
• The kernel function is given as: 

Ku (d(xu, x)) = e A

A

1

2σA

2
AEu E

 E

 AE  E

d2(xu, x) 

• This isAE a Gaussian kernel with σu
2 as the variance. 

• The RBF networks are trained in two stages: 

 Determine the value of k, the number of hidden units. Each hidden unit u is 
defined by choosing the values xu andσu

2 accordance with the kernel 
function. 

 Maximize the weights wu to fit the network to the training data using global 
error criterion (E) 

E ≡ A

1
2E

A A ∑

x ∈  D
  E A(f(x) – A f̂ E

A(x))2 

 
Fig. 4.4. Radial Basis Network 
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• Each hidden unit in the radial basis function shown in Fig 4.4 produces an 
activation determined by a Gaussian function centered at some instance xu. 

• Its activation will be close to zero unless the input x is near xu.  

• The output unit produces a linear combination of the hidden unit activations. 

• Although the network shown here has just one output, multiple output units can 
also be included. 

• Choosing the number of hidden units or proper kernel function is crucial. 

• Two approaches are widely adopted for selection: 

 Allocate a Gaussian kernel function for each training example (xi, f(xi)) 
centered at xi. Each kernel is assigned same width σ2. The RBF network 
learns the global approximation to the target function in which the training 
example can influence the value of f̂  only in the neighbourhood of xi. The 
main advantage of this approach is that it allows RBF network to fit the 
training data exactly. 

 Choose set of kernel functions that is smaller than the number of training 
examples. These functions can be distributed at centres with uniform 
spacing. Non uniform distribution of centers may also be considered.  

4.5.   CASE BASED REASONING (CBR) 

• In case-based reasoning, the training examples, the cases, are stored and 
accessed to solve a new problem.  

• To get a prediction for a new example, those cases that are similar, or close to, 
the new example are used to predict the value of the target features of the new 
example. 

 

 

 

• CBR draws attention because of the following features:  

 CBR does not require an explicit domain model and so elicitation becomes 
a task of gathering case histories. 

Case-Based Reasoning (CBR) solves new problems by adapting 
previously successful solutions to similar problems.  
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 Implementation is reduced to identifying significant features that describe a 
case, an easier task than creating an explicit model.  

 CBR systems can learn by acquiring new knowledge as cases.  

 This and the application of database techniques makes the maintenance of 
large volumes of information easier. 

Similarities and differences between other learning methods 

Instance-based methods have three key properties. 

 They are lazy learning methods in that they defer the decision of how to 
generalize beyond the training data until a new query instance is observed.  

 They classify new query instances by analysing similar instances while 
ignoring instances that are very different from the query.  

 They represent instances as real-valued points in an n-dimensional 
Euclidean space. 

The case based reasoning approaches follow first two properties but differ in third 
property. In CBR, instances are typically represented using more rich symbolic 
descriptions, and the methods used to retrieve similar instances are correspondingly 
more elaborate. CBR has been applied to problems such as conceptual design of 
mechanical devices based on a stored library of previous designs, reasoning about new 
legal cases based on previous rulings, and solving planning and scheduling problems by 
reusing and combining portions of previous solutions to similar problems. 

4.5.1.   Problem solving in CBR 

CBR is described by reasoning by remembering: previously solved problems (cases) 
are used to suggest solutions for novel but similar problems. The four assumptions 
about the world around us that represent the basis of the CBR approach: 

1. Regularity: the same actions executed under the same conditions will tend to 
have the same or similar outcomes. 

2. Typicality: experiences tend to repeat themselves. 

3. Consistency: small changes in the situation require merely small changes in the 
interpretation and in the solution. 
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4. Adaptability: when things repeat, the differences tend to be small, and the small 
differences are easy to compensate for. 

 
Fig. 4.5. Problem Solving using CBR 

• Once the currently encountered problem is described in terms of previously 
solved problems, the most similar solved problem can be found.  

• The solution to this problem might be directly applicable to the current problem 
but, usually, some adaptation is required.  

• The adaptation will be based upon the differences between the current problem 
and the problem that served to retrieve the solution.  

• Once the solution to the new problem has been verified as correct, a link 
between it and the description of the problem will be created and this additional 
problem solution pair (case) will be used to solve new problems in the future.  

• Adding of new cases will improve results of a CBR system by filling the 
problem space more densely.  

4.5.2.   CBR Working Cycle 

The CBR working cycle can be described best in terms of four processing stages: 

1. Case retrieval: after the problem situation has been assessed, the best matching 
case  is searched in the case base and an approximate solution is retrieved. 

2. Case adaptation: the retrieved solution is adapted to fit better the new problem. 
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3. Solution evaluation: the adapted solution can be evaluated either before the 
solution is applied to the problem or after the solution has been applied. In any 
case, if the accomplished result is not satisfactory, the retrieved solution must be 
adapted again or more cases should be retrieved. 

4. Case-base updating: If the solution was verified as correct, the new case may be 
added to the case base. 

A variant of the above mentioned cycle is given as: 

1. RETRIEVE the most similar case(s); 

2. REUSE the case(s) to attempt to solve the current problem; 

3 REVISE the proposed solution if necessary; 

4. RETAIN the new solution as a part of a new case. 

 
Fig. 4.6. CBR Working Cycle 

• A new problem is matched against the cases furnishing the case base and one or 
more similar cases are retrieved.  

• A solution suggested by the matching cases is then reused.  
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• Unless the retrieved case is a close match, the solution will probably have to be 
revised (adapted) and tested (evaluated) for success, producing a new case that 
can be retained ensuing, consequently, update of the case base. 

4.5.3.   Case representation 

A case is a contextualized piece of knowledge representing an experience. It 
contains the past lesson that is the content of the case and the context in which the 
lesson can be used. A case contains: 

• Problem description: depicts the state of the world when the case occurred 

• Problem solution: states the derived solution to that problem 

• Outcome: describes the state of the world after the case occurred. 

• The problem description essentially contains as much data about the problem 
and its context as necessary for an efficient and accurate case retrieval.  

• The problem solution can be either atomic or compound.  

• Atomic solutions are typical for CBR systems used for diagnosis or for 
classification in general.  

• Compound solutions can be found for instance in CBR systems utilised for 
planning or design.  

• A compound solution may be composed of a sequence of actions, an 
arrangement of components, etc.  

Advantages of Case based learning 

The benefits of CBR as a lazy problem-solving method are: 

• Ease of knowledge elicitation: Lazy methods use the available cases or problem 
instances instead of rules that are difficult to extract. So, classical knowledge 
engineering is replaced by case acquisition and structuring. 

• Absence of problem-solving bias: The cases are stored in a raw form, they can 
be used for multiple problem-solving purposes. This in contrast to eager 
methods, which can be used merely for the purpose for which the knowledge 
has already been compiled or preprocessed. 

• Incremental learning: A CBR system can be put into operation with a minimal 
set of solved cases serving as case base. The case base will be filled with new 
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cases as the system is used, increasing the system’s problem-solving ability. 
When new cases are augmented, new indexes and clusters/categories can be 
created and the existing ones can be changed. Hence dynamic on-line adaptation 
to a non-rigid environment is possible. 

• Suitability for complex and not-fully formalised solution spaces: CBR systems 
can be applied to an incomplete model of problem domain; implementation 
involves both to identify relevant case features and to furnish, possibly a partial 
case base, with propercases.  

• Suitability for sequential problem solving: Sequential tasks, like these 
encountered in reinforcement learning problems, benefit from the storage of 
history in the form of a sequence of states or procedures. Such storage is 
facilitated by lazy approaches. 

• Ease of explanation: The results of a CBR system can be justified based upon 
the similarity of the current problem to the retrieved case(s). Because solutions 
generated by CBR are easily traceable to precedent cases, it is also easier to 
analyse failures of the system.  

• Ease of maintenance: This is particularly due to the fact that CBR systems can 
adapt to many changes in the problem domain and the pertinent environment, 
merely by acquiring new cases. This eliminates some need for maintenance; 
only the case base needs to be maintained. 

Limitations of CBR 

Major disadvantages of lazy problem solvers are their memory requirements and 
time consuming execution due the processing necessary to answer the queries. The 
limitations of CBR can be summarised as follows: 

• Handling large case bases 

• Dynamic problem domains 

• Handling noisy data 

• Fully automatic operation 



 

ADVANCED LEARNING 

5.1.   LEARNING SETS OF RULES 

• Learning the target function from the given training examples can be effectively 
represented as if-then rules. 

• These rules are easy to understand. 

This type of rule based learning happen in decision trees and genetic algorithms. 

• Alternate ways of learning through rules is by framing first order rules and 
sequential covering algorithms.  

• PROLOG is a programming language that is specifically designed to frame first 
order rules for given examples. 

PROLOG (PROgramming in LOGic) 

Prolog is a logic programming language. Unlike many other programming 
languages, Prolog is intended primarily as a declarative programming language. In 
prolog, logic is expressed as relations (called as Facts and Rules). Formulation or 
Computation is carried out by running a query over these relations. Prolog is a 
Programming Language for symbolic, non-numeric computation. Prolog is the major 
example of a fourth generation programming language. The distinguishing features of 
PROLOG includes: 

• Unification: The basic idea is, can the given terms be made to represent the 
same structure. 

• Backtracking: When a task fails, prolog traces backwards and tries to satisfy 
previous task. 

• Recursion: Recursion is the basis for any search in program. 

UNIT 
5 
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Prolog is based on ‘Horn Clauses' or ‘clauses’ (Rules, Facts and Queries.)Horn 
Clauses are a subset of Predicate Logic. Predicate logic is a way of simply defining 
how reasoning gets done in logic terms. Predicate Logic is a syntax for easily reading 
and writing Logical ideas. 

To transform an English sentence to Predicate Logic, remove unnecessary terms. 
This leaves only the relationship and the entities involved, known as arguments.  

Example: An elephant is bigger than a horse is equivalent to: bigger (elephant, 
horse). 

The relation is ‘bigger’, the relation’s arguments are ‘elephant and horse’. 

In Prolog, the relation’s name (e.g. “bigger”) is the ‘Functor’. A relation may 
include many arguments after the functor. 

A Prolog Program consists of clauses and each clause terminates with a full stop. 

• bigger(elephant, horse). 

• bigger(horse, donkey). 

• bigger(donkey, dog). 

• bigger(donkey, monkey). 

Advantages: 

• Easy to build database.  

• Do not need a lot of programming effort. 

• Pattern matching is easy. Search is recursion based. 

• It has built in list handling. Makes it easier to play with any algorithm involving 
lists. 

Disadvantages: 

• LISP dominates over prolog with respect to I/O features. 

• Sometimes input and output is not easy. 

5.2.   SEQUENTIAL COVERING ALGORITHM 

Sequential covering is a general procedure that repeatedly learns a single rule to 
create a decision list or set that covers the entire dataset rule by rule. 
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• A covering algorithm develops a cover for the set of positive examples that is, a 

set of hypotheses that account for all the positive examples but none of the 
negative examples. 

• This is called sequential covering because it learn one rule at a time and repeat 
this process to gradually cover the full set of positive examples. The most 
effective approach to Learn-One-Rule is beam search. 

• The input rules have high accuracy, but not necessarily high coverage.  
• By accepting low coverage, it need not make predictions for every training 

example. 
Steps in Sequential Covering algorithm 

1. Start with an empty Cover  
2. Using Learn-One-Rule to find the best hypothesis.  
3. If the Just-Learnt-Rule satisfies the threshold then  
  Put Just-Learnt-Rule to the Cover.  
  Remove examples covered by Just-Learnt-Rule.  
  Go to step 2.  
4. Sort the Cover according to its performance over examples.  
5. Return: Cover. 

Algorithm for Sequential Coverage 

Sequential_covering (Target_attribute, Attributes, Examples, Threshold) : 

     Learned_rules = {} 

     Rule = Learn-One-Rule(Target_attribute, Attributes, Examples) 

    while Performance(Rule, Examples) > Threshold : 

               Learned_rules = Learned_rules + Rule 

               Examples = Examples - {examples correctly classified by Rule} 

                Rule = Learn-One-Rule(Target_attribute, Attributes, Examples) 

  Learned_rules = sort Learned_rules according to performance over Examples 

  return Learned_rules 

The idea in a sequential covering algorithm is to learn one rule, remove the data 
it covers, then repeat. 
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• The sequential covering algorithm for learning a disjunctive set of rules.  

• The learn-one-rule return a single rule that covers at least some of the examples. 

• Performance is a user-provided subroutine to evaluate rule quality. This 
covering algorithm learns rules until it can no longer learn a rule whose 
performance is above the given Threshold. 

5.2.1.   General to Specific Beam Search 

Learn-one-rule 

 This follows the principle of general-to-Specific Search. 

 Consider the most general rule (hypothesis) which matches every instance in the 
training set.  

 Repeatedly add the attribute that most improves rule performance measured 
over the training set until the hypothesis reaches an acceptable level of 
performance. 

Algorithm for Learn-one-rule 

// returns a single rule that covers some of the examples. Conducts a 
general_to_specific  

// greedy beam search for the best rule, guided by performance metric. 

Initialize best_hypothesis to the most general hypothesis φ 

Initialize Candidate_hypothesis to the set {best_hypothesis} 

While candidate_hypothesis is npot empty, Do 

 1. Generate the next more specific candidate_hypothesis 

        All _constraints←set of all constraints of the form (a=v), a-member of 
attributes,  

        v-value of a that occurs in the current set of examples 

       New_candidate_hypothesis← 

            For each h in Candidate_hypothesis 

                 For each c in All_constraints 

                       Create a specialization of h by adding the constraint c 
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        Remove from new_candidate_hypothesis any hypothesis that are duplicates, 

                Inconsistent or not maximally specific 

2. Update best_hypothesis 

       For all h in new_candidate_hypothesis do 

               If (performance(h, examples, Target_attribute)  

>(performance(best_hypothesis, examples, Target_attribute) 

              Then best_hypothesis ←h 

3. Update candidate_hypotheiss 

     Candidate_hypothesis←the k best members of new_candidate_hypothesis 

     according to the performance measure. 

Return a rule of the form 

            “IF best_hypothesis THEN prediction” where prediction is the most 
frequent  

             Value of target_attribute among those examples that match 
best_hypothesis 

 

Performance(h, examples, target_attribute) 

h_examples←subset of examples that match attributes h 

return-entropy(h-examples)where entropy is with respect to target attribute. 

The steps are: 

Discretize the continuous features by choosing appropriate intervals. 

For each feature: 

                Create a cross table between the feature values and the (categorical) 
outcome. 

                For each value of the feature, create a rule which predicts the most frequent 
class of the                                instances that have this particular feature value (can 
be read from the cross table) 

                 Calculate the total error of the rules for the feature. 

Select the feature with the smallest total error 
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General-to-Specific Beam Search: 

 This is same as learn-one-rule but with a difference that rather than considering 
a single candidate at each search step, keep track of the k best candidates. 

 The search begins by considering the most general rule precondition possible, 
then greedily adding the attribute test that most improves rule performance 
measured over the training examples.  

 Once this test has been added, the process is repeated by greedily adding a 
second attribute test, and so on.  

 This process grows the hypothesis by greedily adding new attribute tests until 
the hypothesis reaches an acceptable level of performance. 

 This approach to implementing Learn-to-one forms a general-to specific search 
through the space of possible rules in search of a rule with high accuracy, 
though perhaps incomplete coverage of the data. 

 As in decision tree learning, there are many ways to define a measure to select 
the best descendant. 

 The general-to-specific search is a greedy algorithm with depth-first search with 
no backtracking. 

 
Fig. 5.1. Beam search of width = 1 
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 The search for rule preconditions as learn to one proceeds from general to 
specific.  

 At each step, the preconditions of the best rule are specialized in all possible 
ways.  

 Rule postconditions are determined by the examples found to satisfy the 
preconditions. 

 There is a danger that a suboptimal choice will be made at any step.  

 To reduce this risk, extend the algorithm to perform a beam search; that is, a 
search in which the algorithm maintains a list of the k best candidates at each 
step, rather than a single best candidate.  

 On each search step, descendants are generated for each of these k best 
candidates, and the resulting set is again reduced to the k most promising 
members.  

 Beam search keeps track of the most promising alternatives to the current top-
rated hypothesis, so that all of their successors can be considered at each search 
step. 

 Each hypothesis considered in the main loop of the algorithm is a conjunction of 
attribute-value constraints.  

 Each of these conjunctive hypotheses corresponds to a candidate set of 
preconditions for the rule to be learned and is evaluated by the entropy of the 
examples it covers. 

 The search considers increasingly specific candidate hypotheses until it reaches 
a maximally specific hypothesis that contains all available attributes.  

 The postcondition for the output rule is chosen only in the final step of the 
algorithm, after its precondition has been determined.  

 The algorithm constructs the rule postcondition to predict the value of the target 
attribute that is most common among the examples covered by the rule 
precondition.  

5.3.   LEARNING RULE SETS 

The implications of learning by rule strategy are discussed briefly in this section. 
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Relation between ID3 and Sequential Covering algorithm 

The decision tree algorithm (ID3) and sequential covering algorithm learns the 
hypothesis in a similar manner. 

Sequential Covering Algorithm Simultaneous Covering algorithms 
This learn one rule at a time, removing the 
covered examples and repeating the 
process on the remaining examples. 

This learns the entire set of disjuncts 
simultaneously as part of the single search 
for an acceptable decision tree. 

This chooses among alternative attribute-
value pairs, by comparing the subsets of 
data they cover. 

ID3 chooses among alternative attributes 
by comparing the partitions of the data 
they generate. 

To learn a set of n rules, each containing k 
attribute-value tests in their preconditions, 
sequential covering algorithms will 
perform n. k primitive search steps, 
making an independent decision to select 
each precondition of each rule. 

If the decision node tests an attribute that 
has m possible values, the choice of the 
decision node corresponds to choosing a 
precondition for each of the m 
corresponding rules 

Sequential covering algorithms make a 
larger number of independent choices 
than simultaneous covering algorithms. 

Simultaneous covering algorithms will 
make many fewer independent choices, 
because each choice of a decision node in 
the decision tree corresponds to choosing 
the precondition for the multiple rules 
associated with that node. 

If data is more, then it may support the 
larger number of independent decisions 
required by the sequential covering 
algorithm, 

If data is scarce, the sharing of decisions 
regarding preconditions of different rules 
may be more effective. 

These algorithms different rules test the 
same attributes.  

Testing an attribute using different rules is 
not possible. 

Specific-to-general and General-to-specific 

There are lot of controversies in drawing a hypothesis using Specific-to-general and 
General-to-specific approaches. 
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• In general to specific search there is a single maximally general hypothesis from 
which to begin the search, whereas there are very many specific hypotheses in 
most hypothesis spaces.  

• The selection of starting search point is the major challenge in general to 
specific search. 

• But the specific-to-general search, addresses this issue by choosing several 
positive examples at random to initialize and to guide the search.  

• The best hypothesis obtained through multiple random choices is then selected. 

Training through examples vs Generate and test approach 

• The individual training examples constrain the generation of hypotheses.  

• The generation or revision of hypotheses is driven by the analysis of an 
individual training example, and the result is a revised hypothesis designed to 
correct performance for this single example.  

• The training data is considered only after these candidate hypotheses are 
generated and is used to choose among the candidates based on their 
performance over the entire collection of training examples. 

• The generate and test approach is that each choice in the search is based on the 
hypothesis performance over many examples, so that the impact of noisy data is 
minimized.  

• The example-driven algorithms that refine the hypothesis based on individual 
examples are more easily misled by a single noisy training example and are 
therefore less robust to errors in the training data. 

Post Pruning the rules 

The rules formed after forming the tree perform well on training data but not on new 
data. So post-pruning the rules is a good option to generalize the rules. Preconditions 
can be removed from the rule whenever this leads to improved performance over a set 
of pruning examples distinct from the training examples.  

Evaluation metrics 

The evaluation metric is very important to test the quality of the rules.  

 



 5.10   Advanced Learning 

• Relative frequency: 
Let n denote the number of examples the rule matches and let nc denote the 
number of these that it classifies correctly. The relative frequency estimate of 
rule performance is nc/n. 

• m-estimate of accuracy: 

This accuracy estimate is biased toward the default accuracy expected of the 
rule. It is often preferred when data is scarce and the rule must be evaluated 
based on few examples. As above, let n and nc denote the number of examples 
matched and correctly predicted by the rule. The m-estimate of rule accuracy is: 

A

nc + mp
n + mE

 

Where p be the prior probability and m is the weight.  

• Entropy: 

Entropy measures the uniformity of the target function values for this set of 
examples. 

– Entropy(S) = A ∑

i  = 1
c E Api log2 pi 

where c is the number of distinct values the target function may take on, and 
where pi is the proportion of examples from S for which the target function 
takes on the ith value.  

5.4.   LEARNING FIRST-ORDER RULES 

Propositional Logic 

• It is the study of propositions, where a proposition is a statement that is either 
true or false.  

• Propositional logic may be used to encode simple arguments that are expressed 
in natural language, and to determine their validity.  

• The validity of an argument may be determined from truth tables, or using 
inference rules such as modus ponens to establish the conclusion via deductive 
steps.  
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• This is not sufficient to represent the complex sentences or natural language 
statements. The propositional logic has very limited expressive power. 

Predicate Logic 

• Predicate logic allows complex facts about the world to be represented, and new 
facts may be determined via deductive reasoning.  

• Predicate calculus includes predicates, variables and quantifiers, and a predicate 
is a characteristic or property that the subject of a statement can have.  

• The universal quantifier is used to express a statement such as that all members 
of the domain of discourse have property P, and the existential quantifier states 
that there is at least one value of x has property P. 

First Order Logic (FOL) 

• Propositional logic is the foundation of first-order logic.  

• First-order logic uses quantified variables over non-logical objects and allows 
the use of sentences that contain variables. 

• The propositional logic does not use quantifiers or relations. 

• First-order logic is another way of knowledge representation in artificial 
intelligence. It is an extension to propositional logic. 

• FOL is sufficiently expressive to represent the natural language statements in a 
concise way. 

• First-order logic is also known as Predicate logic or First-order predicate logic. 
First-order logic is a powerful language that develops information about the 
objects in a more easy way and can also express the relationship between those 
objects. 

• First-order logic does not only assume that the world contains facts like 
propositional logic. 

5.4.1.   First-Order Horn Clauses 

 

 

 

A clause is called a Horn clause if it contains at most one positive literal. 
Horn clauses express a subset of statements of first-order logic. 
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The problem is that propositional representations offer no general way to describe 
the essential relations among the values of the attributes. Consider the following 
prepositional logic which states that Sharon is the daughter of Bob. 

If (Father1 = Bob) ∧ (Name2 = Bob) ∧ (Female1 = true) THEN Daughter1,2 = True 

These rules are very specific. Hence we cannot derive generic rules from them. Now 
consider the following FOL: 

IF Father (y, x) ∧ Female(y), THEN Daughter (x, y) 

This is a generic rule. Father (y, x) returns true if y is the father of x else false. Same 
goes for daughter (x, y) also. First-order Horn clauses may also refer to variables in the 
preconditions that do not occur in the postconditions. The previous rule may be 
extended to granddaughter also. 

IF Father (y, z) ∧ Mother (z, x) ∧ Female (y) THEN GrandDaughter(x, y) 

The variable z in this rule, which refers to the father of y, is not present in the rule 
postconditions. Whenever such a variable occurs only in the preconditions, it is 
assumed to be existentially quantified; that is, the rule preconditions are satisfied as 
long as there exists at least one binding of the variable that satisfies the corresponding 
literal. It is also possible to use the same predicates in the rule postconditions and 
preconditions, enabling the description of recursive rules. 

5.4.2.   Terminologies 

• Every well-formed expression is composed of constants, variables, predicates 
and functions.  

• Term - it is a constant, variable or function applied to any term.  

• Literal- Any predicate or its negation applied to any set of terms. 

• A ground literal is a literal that does not contain any variables. 

• A negative literal is a literal containing a negated predicate.  

• A positive literal is a literal with no negation sign. 

• A clause is any disjunction of literals M1 v . . . Mn whose variables are 
universally quantified. 

• A Horn clause is an expression of the form 
H ←  (L1Λ …. ΛLn) 
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H-head of the clause; L1…Ln-Antecedents of the clause 

• A substitution is any function that replaces variables by terms. 

• A unifying substitution for two literals L1 and L2 is any substitution θ such that 
L1θ = L2θ. 

5.5.   LEARNING SETS OF FIRST-ORDER RULES: FOIL 

The Foil algorithm is a supervised learning algorithm that produces rules in first-
order logic. The FOIL (First Order Inductive Logic) algorithm is an extension of 
sequential covering and learn one rule algorithm. The output of this algorithm is single 
rules as in learn one rule. But it has two distinct features:  

• More restricted: literals are not permitted to contain function symbols 

• More expressive: literals in the body can be negated  

FOIL is a top-down algorithm that starts out with a general rule and explores the 
search space by greedily specializing the current rule The main modification is that 
search can also specialize on predicates with variables. The resulting rules differ from 
Horn clauses in two ways: negated symbols are allowed within the body, and FOIL’s 
rules will not include function symbols. 

Example:  

Consider the following statement, 

IF Father(y, z) ^ Father(z, x) ^ Female(x) THEN GrandDaughter (x, y). 

• The algorithm starts with the most general rule.  

• In this example the population has 1,000 individuals, 50 of which are 
granddaughters to someone in the data.   

• As FOIL adds literals to the rule it will greedily choose the rule that increases 
the proportion of POSitives to NEGatives (tick marks). 
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Fig. 5.2. Example of FOIL algorithm 

FOIL algorithm 
FOIL(Target-predicate, Predicates, Examples) 
Pos ← those Examples for which the Target-predicate is True 
Neg ← those Examples for which the Target-predicate is False 
Learned_rules ← {} 
while Pos, do 
Learn a NewRule 
             New Rule ← the rule that predicts Target-predicate with no preconditions 
            NewRuleNeg ← Neg 
while NewRuleNeg, do 
Add a new literal to specialize New Rule 
                         Candidateliterals ← generate candidate new literals for NewRule, 
based on 
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Predicates 
Bestliteralt ←argmax Foil-Gain(L,NewRule) Lε candidate_literals 
add Bestliteral to preconditions of NewRule 
                        NewRuleNeg ←subset of NewRuleNeg that satisfies NewRule 
preconditions 
              Learned_rules ← Learned-rules + NewRule 
             Pos ← Pos - {members of Pos covered by NewRule) 
Return Learned-rules 

• The outer loop corresponds to a variant of the sequential covering algorithm. It 
learns new rules one at a time, removing the positive examples covered by the 
latest rule before attempting to learn the next rule.  

• The inner loop corresponds to a variant learn one rule algorithm which is 
extended to accommodate first-order rules.  

• FOIL seeks only rules that predict when the target literal is True in contrast to 
other algorithms which seek both True and False rules.  

• FOIL performs a simple hill climbing search rather than a beam search. 

• The hypothesis space search performed by FOIL is best understood by viewing 
it hierarchically.  

• Each iteration through FOIL'S outer loop adds a new rule to its disjunctive 
hypothesis, learned rules.  

• The effect of each new rule is to generalize the current disjunctive hypothesis 
(i.e., to increase the number of instances it classifies as positive), by adding a, 
new disjunct. 

• The search is a specific-to-general search through the space of hypotheses, 
beginning with the most specific empty disjunction and terminating when the 
hypothesis is sufficiently general to cover all positive training examples. 

• The inner loop of FOIL performs a finer-grained search to determine the exact 
definition of each new rule.  
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• This inner loop searches a second hypothesis space, consisting of conjunctions 
of literals, to find a conjunction that will form the preconditions for the new 
rule.  

• Within this hypothesis space, it conducts a general-to-specific, hill-climbing 
search, beginning with the most general preconditions possible (the empty 
precondition), then adding literals one at a time to specialize the rule until it 
avoids all negative examples. 

Distinguishing features of FOIL against sequential covering and learn one rule 

• In its general-to-specific search to 'learn each new rule, FOIL employs different 
detailed steps to generate candidate specializations of the rule. This difference 
follows from the need to accommodate variables in the rule preconditions. 

• FOIL employs a PERFORMANCE measure, Foil-Gain, that differs from the 
entropy measure as in learn one rule. This difference follows from the need to 
distinguish between different bindings of the rule variables and from the fact 
that FOIL seeks only rules that cover positive examples. 

5.5.1.   Expanding candidate specializations in FOIL 

FOIL expands its search space by specializing rules through the addition of literals 
to the rule body. If the current rule has rule head P(x1,x2,…xk) and body literals of  
L1,L2 … Ln the following three type of literal additions can be done: 

• Q(vi,…,vr) where Q is a valid predicate and at least one of variable v1 is already 
in the rule body. 

• Equal (xj, xk), where variables xj, x are already in the rule. 

The negation of the above: ¬ Q(vi,…,vr) or ¬Equal (xj, xk) 

Example: 

• Consider learning rules to predict the target literal GrandDaughter(x, y), where 
the other predicates used to describe examples are Father and Female.  

• The general-to-specific search in FOIL begins with the most general rule 

GrandDaughter(x, y) ← 

which asserts that GrandDaughter(x, y) is true of any x and y.  



Machine Learning Techniques  5.17  

• To specialize this initial rule, the above procedure generates the following 
literals as candidate additions to the rule preconditions:  

Equal (x,y ) , Female(x), Female(y), Father(x, y), Father(y, x), Father(x, z), 
Father(z, x), Father(y, z), Father(z, y), and the negations of each of these literals 
(e.g., -Equal(x, y)). 

• FOIL greedily selects Father (y, z) as the most promising, leading to the more 
specific rule 

Grand Daughter(x, y) ← Father (y, z) 

• In generating candidate literals to further specialize this rule, FOIL will now 
consider all of the literals mentioned in the previous step, plus the additional 
literals Female(z), Equal(z, x), Equal(z, y), Father(z, w), Father(w, z), and their 
negations.  

• These new literals are considered at this point because the variable z was added 
to the rule in the previous step. Because of this, FOIL now considers an 
additional new variable w. 

• If FOIL at this point were to select the literal Father(z, x) and on then next 
iteration select the literal Female(y), this would lead to the following rule, 
which covers only positive examples and hence terminates the search for further 
specializations of the rule. 

GrandDaughter(x, y) ←Father (y, z) ∧ Father (z, x) ∧ female (y) 

• At this point, FOIL will remove all positive examples covered by this new rule.  

• If additional positive examples remain to be covered, then it will begin yet 
another general-to-specific search for an additional rule. 

5.5.2.   Guiding the Search (Foil_Gain) 

• FOIL uses a version of the gain algorithm to determine which newly specialized 
rule to favour.  

• Each rule’s utility is estimated by the number of bits required to encode all of 
the positive bindings. 

• To select the most promising literal from the candidates generated at each step, 
FOIL considers the performance of the rule over the training data.  
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• In doing this, it considers all possible bindings of each variable in the current 
rule. 

• The Foil_Gain(L, R) is estimated from 

Foil_Gain(L,R) ≡ t(log2 A

p1

p1 + n1E

A – log2 A

p0

p0 + n0E

A) 

Where 

L is the candiate literal to add to rule R 
p0 = number of positive bindings of R 

n0 = number of positive bindings of R 

p1 = number of positive bindings of R + L 

n1 = number of positive bindings of R + L 

t  is the number of positive bindings of R also covered by R + L 

Here R-rule and L-literal.  

Example 
• Assume the training data includes the following simple set of assertions, where 

we use the convention that P(x, y) can be read as "The P of x is y." 
• The clauses for learning GrandDaughter (x, y) is given as: 

GrandDaughter(Victor, Sharon)  Father(Sharon, Bob) Father(Tom, Bob) 
Female(Sharon)    Father(Bob, Victor) 

• The clauses that are not mentioned above are assumed to be false. 
• To select the best specialization of the current rule, FOIL considers each distinct 

way in which the rule variables can bind to constants in the training examples. 
GrandDaughter(x, y) ← 

• The rule variables x and y are not constrained by any preconditions and may 
therefore bind in any combination to the four constants Victor, Sharon, Bob, and 
Tom. 

• At each stage, the rule is evaluated based on these sets of positive and negative 
variable bindings, with preference given to rules that possess more 
positivebindings and fewer negative bindings. 
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• As new literals are added to the rule, the sets of bindings will change. Note if a 
literal is added that introduces a new variable, then the bindings for the rule will 
grow in length. 

• If the new variable can bind to several different constants, then the number of 
bindings fitting the extended rule can be greater than the number associated 
with the original rule. 

• – log2 A

p0

p0 + n0E

Ais the number of optimal bits to indicate class of positive bindings. 

5.5.3.   Learning Recursive Sets 

• A more sophisticated form of rule specialization involves the addition of a 
literal that contains the target predicate.  

• If we include the target predicate in the input list of predicates, then FOIL will 
consider it as well when generating candidate literals. 

• This will allow it to form recursive rules-rules that use the same predicate in the 
body and the head of the rule. 

• This specialization is necessary to discover rules such as  

IF Parents(x, z)^Ancestor(z, y) THEN Ancestor(x, y) 
• The Ancestor (z, y) literal initiates a recursive description.  
• Rules must not cause infinite recursion. 

5.6.   INDUCTION ON INVERTED DEDUCTION 

Induction is the reverse of deduction. 
Induction Deduction 

Inductive reasoning consists in constructing 
the axioms from the observation of supposed 
consequences of these axioms. 

Deductive reaonsoning consists in 
combining logical statements 
according to certain agreed upon 
rules in order to obtain new 
statements. 

This is what scientists like physicists for 
example do: observing natural phenomena, 
they postulate the laws of Nature. 

This is how mathematicians prove 
theorems from axioms. Proving a 
theorem is nothing but combining 
a small set of axioms with certain 
rules.  

Inductive reasoning involves making a Deductive reasoning uses available 
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generalization from specific facts, and 
observations. 

facts, information, or knowledge to 
deduce a valid conclusion. 

Inductive reasoning uses a bottom-up 
approach. 

Deductive reasoning uses a top-
down approach. 

Inductive reasoning moves from specific 
observation to a generalization. 

Deductive reasoning moves from 
generalized statement to a valid 
conclusion. 

In inductive reasoning, the conclusions are 
probabilistic. 

In deductive reasoning, the 
conclusions are certain. 

The limitation is that it is impossible to prove 
that an inductive statement is correct. At most 
can one empirically observe that the 
deductions that can be made from this 
statement are not in contradiction with 
experiments. But one can never be sure that 
no future observation will contradict the 
statement. 

The limittaion is for a rich enough 
set of axioms, one can produce 
statements that can be neither 
proved nor disproved. 

Inductive argument can be strong or weak, 
which means conclusion may be false even if 
premises are true. 

Deductive arguments can be valid 
or invalid, which means if 
premises are true, the conclusion 
must be true. 

 
Fig. 5.3. Inductive vs Deductive learning 
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Induction is finding hypothesis h such that, 
(∀〈xi, f(xi)〉 ∈ D)B ∧ h ∧ xi ┠ f(xi) 

Where D is the training data, xi is the ith training instance, f(xi) is the target function 
value for xi and B is the back ground knowledge. For each training data instance, the 
instance’s target classification is logically entailed by the background knowledge, 
together with hypothesis and the instance itself. 

Example: Induction as inverted Deduction 

Concept: Pairs of people, <u, v>such that child of u is v. 

Consider that there exist one training example 

 describing two people Tim and Sharon in terms of their gender and their relation 
in terms of the predicate father. 

 giving the target predicate Child(Tim,Sharon) for these two people 

The background knowledge is that if u is the father of v then u is a parent of v. Then, 

f(xi): child(Time, Sharon) 

xi: Male (Tim), Female (Sharon), Father (Sharon, Tim)  

B: parent (u, v)←father (u, v). 

The hypothesis h satisfies 
(∀〈xi, f(xi)〉 ∈ D)B ∧ h ∧ xi ┠ f(xi) 

h1: Child(u, v ) ←Father (v, u) 

h2: Child(u, v)← Parent (v, u) 

h1 ∧ Father ( Sharon, Tim) |--Child(Tim, Sharon) 

Parent (u, v) ←father (u, v) ∧ h2∧father (Sharon, Tim) |--Child(Tim, Sharon) 

This is learning a hypothesis using inverse deduction. 

Advantages: 

• Supports earlier idea of finding h that fits training data. 

• Domain theory B helps define meaning of fit the data 

• Suggests algorithms that search H guided by B 
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Disadvantages: 

• Noise can result in inconsistent constraints in h and most logical frameworks 
break down when given inconsistent sets of assertions. Hence this is not good 
with noisy data. 

• First order logic gives a huge hypothesis space H with overfitting and  
intractability of calculating all acceptable hypothesis 

• While using background knowledge B should help constrain hypothesis search, 
for many ILP systems hypothesis space search increases as B is increased. 

5.7.   INVERTING RESOLUTIONS 

• The automated deduction is obtained by the resolution.  

• The resolution rule is a sound and complete rule for deductive inference in first-
order logic.  

• The resolution rule can be inverted to form an inverse entailment operator.  

• It is easiest to introduce the resolution rule in propositional form, though it is 
readily extended to first-order representations.  

• Let L be an arbitrary propositional literal, and let P and R be arbitrary 
propositional clauses. The resolution rule is: 

P    ∨ L 

¬L ∨ R 

P    ∨ R 

• Given the two clauses above the line, conclude the clause below the line. 

• Intuitively, the resolution rule is quite sensible. Given the two assertions P v L 
and -L v R, it is obvious that either L or -L must be false. Therefore, either P or 
R must be true. Thus, the conclusion P v R of the resolution rule is intuitively 
satisfying. 

• Given two clauses C1 and C2, the resolution operator first identifies a literal L 
that occurs as a positive literal in one of these two clauses and as a negative 
literal in the other. It then draws the conclusion given by the above formula. 
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C1 P    ∨ L 
C2 ¬L ∨ R 

Resolvent: P    ∨ R 

• Treating clauses as sets of literals (i.e. implicit disjunction) resolution is defined 
as follows: 

 Given initial clauses C1 and C2, find a literal L from clause C1 such that 
¬L occurs in C2 

 Form the resolvent C by including all literals from C1 and C2, except for L 
and ¬L. More precisely, the set of literals occurring in the conclusion C is 

C = (C1 – {L}) ∪ (C2 – {¬L}) 

Example: 
Consider, 

C2  StudyKnowMaterial    ¬Study V KnowMaterial 

C1  KnowMaterialPassExam                          ≅¬KnowMaterial V PassExam 

C Study  PassExam ¬Study V PassExam 

 
So, to invert we need to go from C and C1 to C2. A general operation for doing this 

is (inverted resolution): 

1. Given initial clauses C1 and C, find a literal L that occurs in clause C1, but not 
in clause C. 

2. Form the second clause C2 by including the following literals.  
 C2 = (C – (C1 – {L})) ∪ {¬L} 
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5.7.1.   First Order Resolution 

First order resolution takes two clauses C1 and C2 as input and yields a third C as 
output. Unlike propositional resolution the C1 and C2 must be related not by sharing a 
literal and its negation, but by sharing a literal and negated literal that can be matched 
by a unifying substitution.  

Formally, first order resolution is defined as follows: 

1. Find a literal L1 from clause C1, literal L2 from clause C2, and substitution q 
such that L1q = ¬L2q 

2. Form the resolvent C by including all literals from C1q and C2q, except for L1q 
and ¬L2q. 

More precisely, the set of literals occurring in the conclusion C is 
C = (C1 – {L1}) θ ∪ (C2 – {L2})θ 

Example: 

C1   Swan(X)White(X)    ¬Swan(X) V White(X) 

C2    Swan(fred)     ≅ Swan(fred) 

C     White(fred)                                                      White(fred) 

Setting θ = {X/ Fred}, 
C = (C1 – {L1}) θ ∪ (C2 – {L2})θ 

= ({¬Swan(X), White(X)} –{¬Swan(X)}){X/fred}∪ 

   ({Swan(frd)}-{Swan(fred)}){X/fred} = white(fred) 

An inverse first order resolution operator can be derived by algebraic manipulation 
of the equation expressin the definition of the first order resolvent: 

C = (C1 – {L1}) θ ∪ (C2 – {L2})θ 

The substitution q can be factored into two substitutions θ1 and θ2 such that: 
• θ = θ1θ2 

• θ1 contains all and only variable bindings involving variables in C1 

• θ2 contains all and only variable bindings involving variables in C2 

Since C1 and C2 are universally quantified they can be rewritten, if necessary, to 
contain novariables in common. Hence the above definition can be rewritten as: 
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C = (C1 – {L1}) θ1 ∪ (C2 – {L2})θ2 

If we restrict inverse resolution to infer clauses C2 that contain no literals in 
common with C1 then re-write above as: 

C = (C1 – {L1}) θ1 ∪ (C2 – {L2})θ2 

Note that L2 = ¬L1θ1θ2-1, 
C2 = (C – (C1 – {L1}) θ1)θA

–1
AE2 E ∪ (¬L1θ1θA

–1
AE2 E} 

Example: 

 
To learn rules for target predicate GrandChild(y, x) given 

• training data D = GrandChild(Bob,Shannon) 

• background information B = {Father(Shannon,Tom),Father(Tom.Bob)} 

Proceed as follows: 

1. Set C = GrandChild(Bob,Shannon) 

2. Select C1 = Father(Shannon,Tom) from B 

3. For inverse resolution L1 must be Father(Shannon,Tom). S 

 electing θ2-1={Shannon/x}, 

 C2 = (C-(C1-{L1}θ1)θ2-1      U {¬L1θ1θ2-1} 

      = GrandChild(Bob,x)}U{¬father(x, Tom)}     

4. Appropriate choices for L1 and θ2-1 yields, 

 GrandChild(y, x) ← Father(x, z)∧Father(z, y) 
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Summary 

• The inverse resolution operation is non-deterministic.  

• In general, for a given target predicate C 

 there are many ways to pick C1 and L1 

 many ways to pick the unifying substitutions θ1 and θ2 

• Rule learning algorithms based on inverse resolution have been developed.  

• For example CIGOL uses sequential covering to iteratively learn a set of Horn 
clauses that covers positive examples 

 on each iteration a training example (xi, f(xi)) not yet covered by rules is 
selected 

 inverse resolution is used to generate a candidate hypothesis h that satisfies 
B ∧ h ∧ xi ┠ f(xi) 

  where B is background knowledge plus clauses learned already. 

 note that this is an example-driven search, though if multiple hypotheses 
cover the example, then the one with highest accuracy over further 
examples can be preferred . 

 this contrasts with FOIL which uses a generate-then-test approach. 

5.7.2.   Generalization, θ-Subsumption, and Entailment 

• more-general-than: Given two boolean-valued functions hj(x) and hk(x), we 
say that hj ≥ hk if and only if  
(∀x) hk(x) → hj(x) 

This relation is used by many learning algorithms to guide search through the 
hypothesis space. 

• θ subsumption: Consider two clauses Cj and Ck, both of the form H V L1 V… 
Ln, where H is a positive literal, and the Li are arbitrary literals. Clause Cj is 
said to θ-subsume clause Ck if and only if there exists a substitutionθ such that 
Cj θ ⊆ Ck 
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• Entailment: Consider two clauses Cj and Ck. Clause Cj is said to entailclause Ck 

if and only if Ck follows deductively from Cj. 

Consider a boolean-valued hypothesis h(x) for some target concept c(x), where h(x) 
is expressed by a conjunction of literals, then we can re-express the hypothesis as the 
clause 

c(x) ← h(x) 

x is classified a negative example if it cannot be proven to be a positive example. If  
h1 ≥ g h2 

then the clause C1: c(x)←h1(x) θ-subsumes the clause C2: c(x) ← h2(x). 

θ-subsumption is a special case of entailment. That is, if clause A θ-subsumes clause 
B, then A |-- B. However, we can find clauses A and B such that A |-- B, but where A 
does not θ- subsume B. 

5.7.3.   PROGOL 

 

 

 

 

Inverse Entailment is used with mode declarations to derive the most-specific clause 
within the mode language which entails a given example. This clause is used to guide a 
refinement-graph search. Inverse resolution is one way to invert deduction to derive 
inductive generalisations. But, can easily lead to combinatorial explosion of candidate 
hypotheses due to multiple choices for: 

 input clauses/literals for inverse resolution 

 unifying substitutions for inverse resolution 

PROGOL reduces this combinatorial explosion by using an alternative approach, 
called mode directed inverse entailment (MDIE). 

 Use inverse entailment to generate most specific h that together with 
background information entails observed data 

 Then perform general-to-specific search through a hypothesis space H bounded 
by the most specific hypothesis and constrained by user-specified predicates. 

Progol is implementation of inductive logic programming used in 
computer science that combines Inverse Entailment with general-to-specific 
search through a refinement graph. 
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PROGOL algorithm: 

• The user specifies a restricted language of first-order expressions to be used as 
the hypothesis space H. Restrictions are stated using mode declarations, which 
enable the user to specify the predicate and function symbols to be considered, 
and the types and formats of arguments for each. 

• PROGOL uses a sequential covering algorithm to learn a set of expressions 
from H that cover the data.  

• PROGOL then performs a general-to-specific search of the hypothesis space 
bounded by the most general possible hypothesis and by the specific bound hi 
calculated in step 2. 

5.8.   ANALYTICAL LEARNING 

Analytical learning uses prior knowledge and deductive reasoning to augment the 
information provided by the training examples. This is different from inductive 
learning that require a certain number of training examples to achieve a given level of 
generalization accuracy. 

Differences between analytical and inductive learning 
Analytical Learning Inductive Learning 

Logical reasoning is used to identify 
features. 

Statistical reasoning is used to identify 
features. 

Works well even with scarce training 
examples. 

Fundamental bounds on accuracy depend 
on number of training examples. 

  

Hypothesis fits domain theory. Hypothesis fits data. 

• In inductive learning, the learner is given a hypothesis space H from which it 
must select an output hypothesis, and a set of training examples  
D = {(x1, f(x1)),…,(xn,f(xn))} where f (xi) is the target value for the instance xi. 
The desired output of the learner is a hypothesis h from H that is consistent with 
these training examples. 
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• In analytical learning, the input to the learner includes the same hypothesis 
space H and training examples D as for inductive learning. In addition, the 
learner is provided an additional input: A domain theory B consisting of 
background knowledge that can be used to explain observed training examples. 
The desired output of the learner is a hypothesis h from H that is consistent with 
both the training examples D and the domain theory B. 

The analytical learning problem must provide a domain theory sufficient to explain 
why observed positive examples satisfy the target concept. This is the distinguishing 
factor of analytical learning 

 
Fig. 5.4. Choice between Inductive and analytical learning 

Example: 

X: Instance Space: Each instance is a pair of objects describe by: Type, Color, 
Volume, Owner, Material, Density, and On (can be stacked on another object). 

H: Hypothesis space: Each one is a set of Horn clauses. 

Target Concept: SafeToStack(x,y) 

D: SafeToStack(o1,o2),On(o1,o2), Type(o1,Box), Type(o2, endtable), 
Color(o1,red), Color(o2,blue), Volume(o1, 2), Owner(o1, Fred), Owner(o2, Louis), 
Density(o1, 0.3), Material(o1, Cardboard), Material(o2, Wood) 
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B: Domain Theory 
SafeToStack(x,y) ← ¬Fragile(y) 
SafeToStack(x,y) ← Lighter(x,y) 
Lighter(x,y) ← Weight(x,wx) ∧ Weight(y,wy) ∧ LessThan(wx,wy) 
Weight(x,w) ← Volume(x,v) ∧ Density(x,d) ∧ Equal(w,times(v,d)) 
Weight(x,5) ← Type(x, endtable) 
Fragile(x) ← Material(x,Glass) 
• The crux of analytical learning is finding h that is consistent with training 

examples and domain theory. 
• The domain theory must explain why certain pairs of objects can be safely 

stackedon one another.  
• The domain theory includes assertions such as "it is safe to stack x on y if y is 

not Fragile," and "an object x is Fragile if the Material from which x is made is 
Glass." 

• Like the learned hypothesis, the domain theory is described by a collection of 
Horn clauses, enabling the system in principle to incorporate any learned 
hypotheses into subsequent domain theories. 

• The domain theory is sufficient to prove that the positive example shown there 
satisfies the target concept SafeToStack. 

5.9.   PERFECT DOMAIN THEORY 

• A perfect domain theory is correct and complete. 

 

 

 
• A domain theory is complete with respect to target concept and X, if it covers 

every positive example in the instance space. 
• Domain theory is complete if every instance that satisfies the target concept can 

be proven by the domain theory to satisfy it.  
• Completeness does not require that the domain theory be able to prove that 

negative examples do not satisfy the target concept. 
• Perfect domain theories are often unrealistic, but, learning in them is a first step 

before learning with imperfect theories. 

A domain theory is correct if each of its assertions is a truthful statement 
about the world. 
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Learning through domain theory: 

The need to learn the problem even after having the domain theory is due to two 
reasons: 

• There are cases in which it is feasible to provide a perfect domain theory. For 
example, in chess problem in which the legal moves of chess form a perfect 
domain theory from which the optimal chess playing strategy can (in principle) 
be inferred. Optimal chess playing rules are extremely difficult to be framed. 
Here, provide the domain theory to the learner and rely on the learner to 
formulate a useful description of the target concept by examining and 
generalizing from specific training examples. 

• It is unreasonable to assume that a perfect domain theory is available. It is 
difficult to write a perfectly correct and complete theory even simple problem.  

5.9.1.   PROLOG-EBG (Kedar-Cabelli and McCarty)  

PROLOG-EBG is an illustration to perfect domain theory, which is a representative 
of several explanation-based learning algorithms. It is a method that combines the 
power of inductive and analytical learning. 

 

 

 

 

 

 
• When given a complete and correct domain theory, PROLOG-EBG is 

guaranteed to output a hypothesis that is itself correct and that covers the 
observed positive training examples. 

• For any set of training examples, the hypothesis output by PROLOG-EBG 
constitutes a set of logically sufficient conditions for the target concept, 
according to the domain theory. 

//Target function: the function to be learned. 
//Domain theory: prior knowledge capable ofpredicting/explaining the output of the 
target function given its input 
//Training instances: examples of input, outputpairs of the target function 

PROLOG-EBG is a sequential covering algorithm that operates by 

learning a single Horn clause rule, removing the positive training 

examples covered by this rule, then iterating this process on the 

remaining positive examples until no further positive examples remain 

uncovered. 
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//Operation criterion: constraints on howthe learned function must be described 
//Determine:An operational representation of the target function that best ts both the 
observed training instances and the given domain theory 
Prolog-EGB(TargetConcept, TraningExamples, DomainTheory) 
LearnedRules = {} 
Pos = the positive examples from TraningExamples. 
for each PositiveExample in Pos that is not covered by LearnedRules do 
1. Explain  
Explanation = an explanation in terms of DomainTheory that Pos satisfies the 
TargetConcept 
2. Analyse  
SufficientConditions = the most general set of features of PositiveExample sufficient 
tosatisfy the TargetConcept according to the Explanation 
3. Refine 
LearnedRules = LearnedRules + newHornClause where newHornClause is of the 
formTargetconcept←sufficient conditions 
 return LearnedRules 

• The new Horn clause is created by  

1. Explain i, by showing how the domain theory predicts the value of the 
target function for input i 

2. Analyze this explanation to determine the relevance of different features of 
i with respect to the target function 

3. CRefine the current representation of the target function to take into 
account this new training example and the information about feature 
relevance extracted from the explanation  

• There may be multiple possible explanations for the domain. 

• In such cases, any or all of the explanations may be used.  

• While each may give rise to a somewhat different generalization of the training 
example, all will be justified by the given domain theory. 
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Example:  

Concept:  SafeToStack(o1,o2) can be explained by using the domain theory, as such: 

1. Volume(o1,2) ∧ Density(o1,0.3) ∧ Equal(0.6, 2*0.3) → Weight(o1,0.6) 

2. Type(o2,endtable) → Weight(o2,5) 

3. Weight(o1, 0.6) ∧ LessThan(0.6, 5) ∧ Weight(o2,5) → Lighter(o1,o2) 

4. Lighter(o1, o2) → SafeToStack(o1,o2) 

In Prolog-EGB this explanation is generated using backward chaining search, as 
done by Prolog. Like Prolog, it halts when it finds a proof. 

 
Fig. 5.5. Explanation of training example 
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5.9.2.   Analysis of the explanation  

• It is important to find the fact that out the many features that happen to be true 
of the current training example, which ones are generally relevant to the target 
concept. 

• By including Density(x, 0.3), but not Owner(x, Fred), the hypothesis for 
SafeToStack(x,y) becomes 

Volume(x,2) ∧ Density(x,0.3) ∧ Type(y,endtable) → SafeToStack(x,y) 

• This is obtained by substituting variables x and y for Objl and Obj2. The 
explanation of the training example forms a proof for the correctness of this 
rule. 

• Although this explanation was formed to cover the observed training example, 
the same explanation will apply to any instance that matches this general rule. 

• The above rule constitutes a significant generalization of the training example, 
because it omits many properties of the example that are irrelevant to the target 
concept.  

• However, an even more general rule can be obtained by more careful analysis of 
the explanation.  

• PROLOG-EBG computes the most general rule that can be justified by the 
explanation, by computing the weakest preimage of the explanation. 

 

 

 

• Prolog-EGB computes the most general rule that can be justified by the 
explanation by computing the weakest preimage.  

• PROLOG-EBG computes the weakest preimage of the target concept with 
respect to the explanation, using a general procedure called regression. 

Regression 

• The regression procedure operates on a domain theory represented by an 
arbitrary set of Horn clauses.  

The weakest preimage of a conclusion C with respect to a proof P is the 

most general set of assertions A, such that A entails C according to P. 
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• It works iteratively backward through the explanation, first computing the 
weakest preimage of the target concept with respect to the final proof step in the 
explanation, then computing the weakest preimage of the resulting expressions 
with respect to the preceding step, and so on.  

• The procedure terminates when it has iterated over all steps in the explanation, 
yielding the weakest precondition of the target concept with respect to the 
literals at the leaf nodes of the explanation. 

 
Fig. 5.6. Computation of weakest preimage 

Learning the concept SafeToStack(x, y) through regression 

• The target concept is regressed from the root (conclusion) of the explanation, 
down to the leaves.  
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• At each step (indicated by the dashed lines) the current frontier set of literals 
(underlined in italics) is regressed backward over one rule in the explanation. 

• When this process is completed, the conjunction of resulting literals constitutes 
the weakest preimage of the target concept with respect to the explanation. 

4. Lighter(o1, o2) → SafeToStack(o1,o2) 

Lighter(x, y) 

3. Weight(o1, 0.6) ∧ LessThan(0.6, 5) ∧ Weight(o2,5) → Lighter(o1,o2) 

Weight(x,wx), LessThan(wx, wy), Weight(y,wy) 

2. Type(o2,endtable) → Weight(o2,5) 

Weight(x,wx), LessThan(wx,5), Type(y,endtable) 

1. Volume(o1,2) ∧ Density(o1,0.3) ∧ Equal(0.6, 2*0.3) → Weight(o1,0.6) 

Volume(x,vx), Density(x,dx), Equal(wx, vx*dx), LessThan(wx,5), Type(y,endtable) 

The final Horn clause has a body that corresponds to the weakest preconditions, and 
the head is the concept: 

SafeToStack(x,y) ← Volume(x, vx) ∧ Density(x,dx) ∧ Equal(wx, vx*dx) ∧ 
LessThan(wx,5) ∧ Type(y,endtable) 

5.9.3.   Refine the current hypothesis 

The current hypothesis at each stage consists of the set of Horn clauses learned 

• thus far. 

• At each stage, the sequential covering algorithm picks a new positive example 
that is not yet covered by the current Horn clauses, explains this new example, 
and formulates a new rule according to the procedure described above. 

• A new instance is classified as negative if the current rules fail to predict that it 
is positive.  

• This is in keeping with the standard negation-as-failure approach used in Horn 
clause inference systems such as PROLOG. 

5.10.   EXPLANATION BASED LEARNING (EBL) 

• Explanation-Based Learning (EBL) is a principled method for exploiting 
available domain knowledge to improve supervised learning.  
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• Improvement can be in one or more dimension such as speed of learning, 
confidence of learning, accuracy of the learned concept, or a combination of 
these.  

• The domain theory represents an expert’s approximate knowledge of complex 
systematic world behavior. It may be imperfect and incomplete.  

• In EBL, the domain theory is required to be much stronger; inferred properties 
are guaranteed.  

• The interaction between domain knowledge and labeled training examples 
afforded by explanations. 

 

 

 

 

The key properties are: 

• Unlike inductive methods, this method produces justified general hypotheses by 
using prior knowledge to analyze individual examples.  

• The explanation of how the example satisfies the target concept determines 
which example attributes are relevant: those mentioned by the explanation.  

• The further analysis of the explanation, regressing the target concept to 
determine its weakest preimage with respect to the explanation, allows deriving 
more general constraints on the values of the relevant features. 

•  Each learned Horn clause corresponds to a sufficient condition for satisfying 
the target concept.  

• The set of learned Horn clauses covers the positive training examples 
encountered by the learner, as well as other instances that share the same 
explanations. 

• The generality of the learned Horn clauses will depend on the formulation of the 
domain theory and on the sequence in which training examples are considered. 

PROLOG-EBG is one of the instance of explanation based learning. It has some 
disadvantages also: 

A detailed analysis of individual training examples to determine 

how best to generalize from the specific. 
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• PROLOG-EBG assumes that the domain theory is correct and complete. If the 
domain theory is incorrect or incomplete, the resulting learned concept may also 
be incorrect. 

Capabilities and limitations of EBL 

EBL is seen from different prespectives: 

EBL as theory-guided generalization of examples: 

EBL uses its given domain theory to generalize rationally from examples, 
distinguishing the relevant example attributes from the irrelevant, allowing it to avoid 
the bounds on sample complexity that apply to purely inductive learning.  

EBL as example-guided reformulation of theories: 

The PROLOG-EBG algorithm can be viewed as a method for reformulating the 
domain theory into a more operational form. The original domain theory is 
reformulated by creating rules that 

 follow deductively from the domain theory 

 classify the observed training examples in a single inference step. 

The learned rules can be seen as a reformulation of the domain theory into a set of 
special-case rules capable of classifying instances of the target concept in a single 
inference step. 

EBL as restating what the learner already knows: 

The learner may sometimes begin with full knowledge of the concept. If its initial 
domain theory is sufficient to explain any observed training examples, then it is also 
sufficient to predict their classification in advance. The difference between what one 
knows in principle and what one can efficiently compute in practice may be great. This 
kind of knowledge reformulation can be an important form of learning in such cases. 
This is also known as knowledge compilation, indicating that the transformation is an 
efficiency improving one that does not alter the correctness of the system's knowledge. 

In general, given the  

 goal in the form of some predicate calculus statement 

 Situation Description or facts 
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 Domain Theory or inference rules 

 Operationality Criterion 

 

 

 

 

 

 

  
Explanation during learning After learning 

Fig. 5.7. Explanation Based Learning 

 An explanation is an inter-connected collection of pieces of knowledge in terms 
of inference rules, rewrite rules, etc. 

 These rules are connected using unification, as in Prolog.  

 The generalization task is to compute the most general unifier that allows the 
knowledge pieces to be connected together as generally as possible. 

5.10.1.   Discovering new features 

• PROLOG-EBG can formulate new features that are not explicit in the 
description of the training examples. 

• These features may be are needed to describe the general rule underlying the 
training example.  

• This aspect of learning the features is similar in kind to the types of features 
represented by the hidden units of neural networks. 

Use problem solver to justify, using the rules, the goal in terms of the 

facts. Generalize the justification as much as possible. The 

operationality criterion states which other terms can appear in the 

generalized result. This is EBL 
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• But the PROLOG-EBG employs an analytical process to derive new features 
based on analysis of single training examples whereas neural networks use 
statistical learning approaches. 

• The issue of automatically learning useful features to augment the instance 
representation is an important issue for machine learning.  

• The analytical derivation of new features in explanation-based learning and the 
inductive derivation of new features in the hidden layer of neural networks 
provide two distinct approaches. 

• Because they rely on different sources of information, it may be useful to 
explore new methods that combine both sources. 

5.10.2.   Deductive Learning  

• PROLOG-EBG is deductive, rather than inductive learning process. 

• It proceeds by calculating the weakest preimage of the explanation it produces a 
hypothesis h that follows deductively from the domain theory B, while covering 
the training data D.  

• PROLOG-EBG outputs a hypothesis h that satisfies the following two 
constraints: 

(∀〈xi, f (xi)〉 ∈ D) (h ∧ xi) ┠ f (xi) 

D ∧ B ┠ h 

Where the training data D consists of a set of training examples in which xi is 
the ith training instance and f(xi) is its target value.  

• The first constraint states that the hypothesis h correctly predicts the target value 
f(xi) for each instance xi in the training data. 

• The second constraint reduces the ambiguity faced by the learner when it must 
choose a hypothesis.  

• The impact of the domain theory is to reduce the effective size of the hypothesis 
space and hence reduce the sample complexity of learning. 

• In particular, PROLOG-EBG assumes the domain theory B entails the 
classifications of the instances in the training data: 

(∀〈xi, f (xi)〉 ∈ D) (B ∧ xi) ┠ f (xi) 
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• This constraint on the domain theory B assures that an explanation can be 
constructed for each positive example. 

5.10.3.   Inductive Bias in Explanation-Based Learning 

• Inductive bias characterizes how the learner generalizes beyond the observed 
training examples. 

• In PROLOG-EBG the output hypothesis follows deductively from D ∧B. 

• The domain theory B is a set of assertions which, together with the training 
examples, entail the output hypothesis.  

• Given that predictions of the learner follow from this hypothesis h, it appears 
that the inductive bias is simply the domain theory B input to the learner. 

• There can be more number of Horn clauses entailed by the domain theory. 

• The PROLOG-EBG algorithm employs a sequential covering algorithm that 
continues to formulate additional Horn clauses until all positive training 
examples have been covered.  

• Also, each individual Horn clause is the most general clause (weakest preimage) 
licensed by the explanation of the current training example.  

• Among the sets of Horn clauses entailed by the domain theory, we can 
characterize the bias of PROLOG-EBG as a preference for small sets of 
maximally general Horn clauses.  

• The greedy version of PROLOG-EBG is only a heuristic approximation to the 
exhaustive search algorithm that would be required to find the truly shortest set 
of maximally general Horn clauses. 

 

 

 

 

• Any attempt to develop a general-purpose learning method must at minimum 
allow the inductive bias to vary with the learning problem at hand.  

• To do this efficiently impart domain specific knowledge to the learner to 
generalize beyond the training data.  

Approximate inductive bias of PROLOG-EBG comprises of the domain 
theory B, along with a preference 

for small sets of maximally general Horn clauses. 
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5.10.4.   Knowledge Level Learning 

• The hypothesis h output by PROLOG-EBG follows deductively from the 
domain theory B and training data D.  

• By examining the PROLOG-EBG algorithm it is easy to see that h follows 
directly from B alone, independent of D. 

• Lemma-Enumerator algorithm does this job. 

• The algorithm enumerates all proof trees that conclude the target concept based 
on assertions in the domain theory B.  

• It estimates the weakest preimage and constructs a Horn clause 

• Unlike PROLOG-EBG, this algorithm considers the training data and 
enumerates all proof trees. 

• The output will be a superset of the Horn clauses. 

• The knowledge-level learning refers to the type of learning, in which the learned 
hypothesis entails predictions that go beyond those entailed by the domain 
theory. 

• The set of all predictions entailed by a set of assertions Y is called as deductive 
closure of Y.  

• The key distinction here is that in knowledge-level learning the deductive 
closure of B is a proper subset of the deductive closure of B + h. 

• Determinations is another perspective of knowledge level learning. 

• Determinations assert that some attribute of the instance is fully determined by 
certain other attributes, without specifying the exact nature of the dependence. 

5.11.   USING PRIOR KNOWLEDGE TO AUGMENT SEARCH OPERATORS: 
FIRST ORDER COMBINED LEARNER (FOCL) ALGORITHM 

FOCL algorithm is seen as an extension of FOIL algorithm.  

5.11.1.   First Order Inductive Learner (FOIL) 

FOIL learns function-free Horn clauses, a subset of first-order predicate calculus.  
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FOIL can be extended to use a variety of types of background knowledge to increase 

the class of problems that can be solved, to decrease the hypothesis space explored, and 
to increase the accuracy of learned rules. FOIL inductively generates a logical concept 
definition or rule for the concept. 

Example: 
Concept: grandfather(X, Y) 
Given: father(X, Y) and parent (X, Y) 
Current clause: Grandfather(X, Y)←Parent(X, Z) 
This clause can be extended by conjoining the body with any of the literals father(X, 

X), father(Y, Z) farher(U, Y), parent(Y, Z), parent(Y, Y) 

Algorithm for FOIL 

Let Pred be the predicate to be learned 
Let Pos be the positive examples 
Until Pos is empty do: 
       Let Neg be the negative examples 
       Set Body to empty 
       Call LearnClauseBody 
       Add Pred←Body to the rule 
       Remove from Pos all examples that satisfy the Body 
Procedure LearnClauseBody 
     Until Neg is empty do: 
            Choose a literal L 
            Conjoin L to Body 
            Remove from Neg examples that do not satisfy L 

Given positive and negative examples of some concept and a set of 

background-knowledge predicates, FOIL inductively generates a logical 

concept definition or rule for the concept. The induced rule allows negated 

predicates but it must not involve any constants or function symbols.  
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5.11.2.   First Order Combined Learner (FOCL) 

FOCL extends FOIL in a variety of ways. Each of these extensions affects only how 
FOCL selects literals to test while extending a clause under construction. These 
extensions allow FOCL to use domain knowledge to guide the learning process. The 
following are the extensions: 

• FOCL to use constraints to limit the search space.  
• FOCL to use defined predicates (i.e., predicates defined by a rule instead of a 

collection of examples) in a manner similar to the extensionally defined 
predicates in FOIL. A collection of intensionally defined predicates is analogous 
to the domain theory of EBL.  

• FOCL to accept as input a partial, possibly incorrect rule that is an initial 
approximation of the predicate to be learned. If this rule is defined in terms of 
extensionally defined predicates, it is analogous to a partial concept definition 
constructed by an incremental inductive learning system. If this rule is defined 
in terms of intensionally defined predicates, it is analogous to the target concept 
of EBL. 

Similarities between FOIL and FOCL: 
• FOCL is an extension of the purely inductive FOIL system. 
• Both FOIL and FOCL learn a set of first-order Horn clauses to cover the 

observed training examples.  
• Both systems employ a sequential covering algorithm that learns a single Horn 

clause, removes the positive examples covered by this new Horn clause, and 
then iterates this procedure over the remaining training examples.  

• In both systems, each new Horn clause is created by performing a general-to-
specific search, beginning with the most general possible Horn clause. Several 
candidate specializations of the current clause are then generated, and the 
specialization with greatest information gain relative to the training examples is 
chosen. This process is iterated, generating further candidate specializations and 
selecting the best, until a Hornclause with satisfactory performance is obtained. 

Differences between FOIL and FOCL algorithm 

FOIL FOCL 
FOIL generates each candidate 
specialization by adding a single 
new literal to the clause 
preconditions. 

FOCL uses this same method for producing 
candidate specializations, but also generates 
additional specializations based on the domain 
theory. 
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5.11.3.   Hypothesis search in FOCL 

• To learn a single rule, FOCL searches from general to increasingly specific 
hypotheses. 

• Two types of operators generate specializations of the current hypothesis. 

 One type adds a single new literal. 

 Next type of operator specializes the rule by adding a set of literals that 
constitute logically sufficient conditions for the target concept, according to 
the domain theory.  

• FOCL selects among all these candidate specializations, based on their 
performance over the data. 

• Therefore, imperfect domain theories will impact the hypothesis only if the 
evidence supports the theory. 

 
Fig. 5.8. Hypothesis search space in FOCL 
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Example 

The Fig 5.8 refers to 12 attributes that describe the training examples (e.g., 
HasHandle, HandleOnTop).Literals based on these 12 attributes are thus considered 
operational.  

FOCL expands its current hypothesis h using the following two operators:  

1. For each operational literal that is not part of h, create a specialization of h by 
adding this single literal to the preconditions.  

2. Create an operational, logically sufficient condition for the target concept 
according to the domain theory. Add this set of literals to the current 
preconditions of h. Finally, prune the preconditions of h by removing any 
literals that are unnecessary according to the training data.  

• FOCL selects one of the domain theory clauses whose head (postcondition) 
matches the target concept.  

• If there are several such clauses, it selects the clause whose body 
(preconditions) have the highest information gain relative to the training 
examples of the target concept. 

• There is only one such clause: 

Cup ← Stable, Liftable, OpenVessel 

• The preconditions of the selected clause form a logically sufficient condition for 
the target concept.  

• Each non operational literal in these sufficient conditions is now replaced, again 
using the domain theory and substituting clause preconditions for clause post 
conditions.  

• This process of "unfolding" the domain theory continues until the sufficient 
conditions have been restated in terms of operational literals.  

• If there are several alternative domain theory clauses that produce different 
results, then the one with the greatest information gain is greedily selected at 
each step of the unfolding process. 

• The final operational sufficient condition given the data and domain theory for 
the above example is 
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BottomIsFlat , HasHandle, Light, HasConcavity , ConcavityPointsUp 
• For each literal in the expression, the literal is removed unless its removal 

reduces classification accuracy over the training examples. 

• The final pruned, operational, sufficient conditions are 

BottomIsFlat , Light, HasConcavity , ConcavityPointsUp 

• Once candidate specializations of the current hypothesis have been generated, 
using both of the two operations above, the candidate with highest information 
gain is selected. 

• The search then proceeds by considering further specializations of the theory-
suggested preconditions, thereby allowing the inductive component of learning 
to refine the preconditions derived from the domain theory. 

• FOCL algorithm learns the Horn clauses of the form, 

c ← oi ∧ ob ∧ of 

c- target concept 

oi - initial conjunction of operational literals 

ob - conjunction of operational literals added in a single step based on the 
domain theory 

of - final conjunction of operational literals added one at a time by the first 
syntactic operator.  

• Any of these three sets of literals may be empty. 

5.12.   REINFORCEMENT LEARNING 

 

 

 

 

 

 

 

In reinforcement learning, the learner is a decision-making agent that 

takes actions in an environment and receives reward for its actions in trying 

to solve a problem. After a set of trial-and error runs, it should learn the 

best policy, which is the sequence of actions that maximize the total reward. 
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• Reinforcement learning is the training of machine learning models to make a 
sequence of decisions.  

• The agent learns to achieve a goal in an uncertain, potentially complex 
environment. 

• In reinforcement learning, an artificial intelligence faces a game-like situation. 

• The computer employs trial and error to come up with a solution to the problem.  

• To get the machine to do what the programmer wants, the artificial intelligence 
gets either rewards or penalties for the actions it performs. 

• Its goal is to maximize the total reward. 

• Although the designer sets the reward policy, the rules of the game, do not offer 
any hint to the model or suggestions for how to solve the game. 

• The model has to to figure out how to perform the task to maximize the reward, 
starting from totally random trials and finishing with sophisticated tactics and 
superhuman skills. 

• By leveraging the power of search and many trials, reinforcement learning is 
currently the most effective way to hint machine’s creativity.  

• In contrast to human beings, artificial intelligence can gather experience from 
thousands of parallel gameplays if a reinforcement learning algorithm is run on 
a sufficiently powerful computer infrastructure. 

• The key distinguishing factor of reinforcement learning is how the agent is 
trained. Instead of inspecting the data provided, the model interacts with the 
environment, seeking ways to maximize the reward. In the case of deep 
reinforcement learning, a neural network is in charge of storing the experiences 
and thus improves the way the task is performed. 
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Fig. 5.9. Agent interacting with the environment 

• The agent exists in an environment described by some set of possible states S.  

• It can perform any of a set of possible actions A.  

• Each time it performs an action a, in some state st the agent receives a real-
valued reward r, that indicates the immediate value of this state-action 
transition. This produces a sequence of states si, actions ai, and immediate 
rewards ri. 

• The agent's task is to learn a control policy,  

π : S → A 

that maximizes the expected sum of these rewards, with future rewards 
discounted exponentially by their delay. 

Approximation tasks vs Reinforcement learning 

The following aspects of reinforcement learning makes its distinct from 
approximation algorithms: 
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• Delayed reward:  
 The task of the agent is to learn a target function n that maps from the 

current state s to the optimal action a = π(s).  

 Training information is not available in reinforcement learning.  

 The trainer provides only a sequence of immediate reward values as the 
agent executes its sequence of actions.  

 The agent, therefore, faces the problem of temporal credit assignment: 
determining which of the actions in its sequence are to be credited with 
producing the eventual rewards. 

• Exploration: 

 In reinforcement learning, the agent influences the distribution of training 
examples by the action sequence it chooses.  

 The learner faces a tradeoff in choosing whether to favor exploration of 
unknown states and actions or exploitation of states and actions that it has 
already learned will yield high reward. 

• Partially observable states: 

 Deploying sensors to observe the environment provide only partial 
information. 

 It may be necessary for the agent to consider its previous observations 
together with its current sensor data when choosing actions, and the best 
policy may be one that chooses actions specifically to improve the 
observability of the environment. 

• Life-long learning: 

 Unlike isolated function approximation tasks, robot or reinforcement 
learning often requires that the robot learn several related tasks within the 
same environment, using the same sensors.  

Challenges with reinforcement learning 

• Preparing the simulation environment, which is highly dependant on the task to 
be performed.  
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• Transferring the model out of the training environment and into to the real 
world is where things get tricky. 

• Scaling and tweaking the neural network controlling the agent is another 
challenge. 

• There is no way to communicate with the network other than through the system 
of rewards and penalties. 

• This in particular may lead to catastrophic forgetting, where acquiring new 
knowledge causes some of the old to be erased from the network. 

• The agent performs the task as it is, but not in the optimal or required way.  

• There are agents that will optimize the prize without performing the task it was 
designed for.  

5.13.   LEARNING TASK IN REINFORCMENT LEARNING 

The reinforcement learning problems can be formalised as Markov Decision Process 
(MDP).  MDPs are a straightforward framing of the problem of learning from 
interaction to achieve a goal. 

 

 

 

 

 

• In a Markov decision process (MDP) the agent can perceive a set S of distinct 
states of its environment and has a set A of actions that it can perform.  

• The mathematical framework for defining a solution in reinforcement learning 
scenario is called Markov Decision Process. This can be designed as: 

 Set of states, S 

 Set of actions, A 

 Reward function, R 

 Policy, π 

 Value, V 

In MDP, the agent and the environment interact continually, the agent 

selecting actions and the environment responding to these actions and 

presenting new situations to the agent. 
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• At each discrete time step t, the agent senses the current state st, chooses a 
current action at, and performs it.  

• The rewards are notated as r(st, at) and the next state as st+1 = δ (st, at). The δ and r 
values will not be known to the agent. 

• The set of actions we took define our policy (π) and the rewards we get in return 
defines our value (V). Our task here is to maximize our rewards by choosing the 
correct policy. 

Vπ (st) ≡ rt + γrt + 1 + γ2 rt + 2 + …. 
≡ A ∑

i  = 0
∞ EA γi rt + i 

• The cumulative value Vπ(st) which is achieved by following an arbitrary policy 
n from an arbitrary initial state is given in the above equation. This is also 
known as discounted cumulative reward achieved by policy n from initial state 
s. 

• A Markov Reward Process or an MRP is a Markov process with value 
judgment, saying how much reward accumulated through some particular 
sequence that are sampled. 

• The following are some of the types of rewards: 

1. Discounted cumulative reward 

2. Finite horizon reward which considers the undiscounted sum of rewards 
over a finite number h of steps. 

∑ A

h
AEi = 0E rt + i 

3. Average reward which considers the average reward per time step over the 
entire lifetime of the agent. 

limh → ∞ A

1
hE

A ∑A

h
AEi = 0E rt + i 

Optimal Policy: 

It is the best action to take at each state, for maximum rewards over time. Two 
factors are essential for determining optimal policy: 

 A way to determine the value of a state in MDP. 

 An estimated value of an action taken at a particular state. 
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The optimal policy denoted by π*, maximises Vπ(S) for all states S.  

π* ≅ argmax Vπ(S), (∀s) 

5.14.   Q-LEARNING (QUALITY LEARNING) 

 

 

 

 

Off-policy algorithm means the learning function learns from actions that are 
outside the current policy, like taking random actions, where a policy or set of rules are 
not available. Q-Learning learns the optimal policy even when actions are selected 
according to a more exploratory or even random policy. The optimal policy is learnt 
from the following equation: 

π∗(s) = Aargmax
a E

A [r(s, a) + γ V* (δ(s, a))] 

V* - sum of discounted future rewards over the infinite future 

r(s, a)- reward of state s over an action a 

δ(s, a) - resulting state after applying action a to state s 

γ - discount rate 

The agent can acquire the optimal policy by learning V*, with knowledge of the 
immediate reward function r and the state transition function δ. After the agent know 
the functions r and δ used by the environment to respond to its actions, it can calculate 
the optimal policy π*(s).  

In many practical problems, it is difficult for the agent or its human programmer to 
predict in advance the exact outcome of applying an arbitrary action to an arbitrary 
state. Q-function is a natural solution in such situations. 

5.14.1.   Q-function 

• The Q function states what the value of a state s and an action a under the policy 
π is. 

Q-learning is an off policy reinforcement learning algorithm that seeks to 

find the best action to take given the current state. 
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• It is denoted as Q(s, a) whose value is the maximum discounted cumulative 
reward that can be achieved starting from state s and applying action a as the 
first action.  

• The value of Q is the reward received immediately upon executing action a 
from state s, plus the value (discounted byγ) of following the optimal policy. 

Q(s, a) ≡ r(s, a) + γ V* (δ(s, a)) 

• This equation can be rewritten as,  
π*(s) = Aargmax

a E

A Q(s, a) 

since the RHS on the optimal policy π*(s) is the maximized reward at state s. 

• This substitution gains significance since, the Q-function will be able to select 
optimal actions without knowing the values of r and δ. 

• The agent can choose the optimal action without ever conducting a look ahead 
search to explicitly consider what state results from the action. 

• The value of Q for the current state and action summarizes in a single number 
all the information needed to determine the discounted cumulative reward that 
will be gained in the future if action a is selected in state s. 

5.14.2.   Q-learning Algorithm 

• Learning the Q function corresponds to learning the optimal policy.   

• Finding a way to estimate training values for Q, given only a sequence of 
immediate rewards r spread out over time is done through iterative 
approximation.  

• The relationship between Q and V* is given as: 
V*(s) = Amax

a′ E

A Q (s, a′) 

• This makes the Q-function to be written as, 

AQ̂E

A(s, a) ← r(s, a) + γ Amax
a′ E

A Q(δ(s, a), a′) 

• After applying the Q function recursively, update to the Q-function ( Q̂ (s, a)) is 
ruled by, 

AQ̂E

A(s, a) ← r  + γ Amax
a′ E

A AQ̂E

A(s′, a′) 
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Q̂ (s, a) - estimate of actual Q function 

Q̂ (s′, a′) - Q function value for new state (s’) and action (a’) 

 

 

 

 

 

• The Q-table can be initially filled with random values.  

• The agent repeatedly observes its current state s, chooses some action a, 
executes this action, then observes the resulting reward r = r(s, a) and the new 
state s' = δ(s, a). 

• It then updates the table entry for Q̂ (s, a) following each such transition, 
according to the rule  

AQ̂E

A(s, a) ← r  + γ Amax
a′ E

A AQ̂E

A(s′, a′) 

Algorithm for Q-Learning 

For each s, a initialize the table entry Q̂ (s, a) to zero 

Observe the current state s 
Do 
Select an action a and execute it 
Receive an immediate reward (r) 
Observe the new state s’ 

Update the entry Q̂ (s, a) according to the rule 

AQ̂E

A(s, a) ← r  + γ Amax
a′ E

A AQ̂E

A(s′, a′) 

s←s’ 

5.14.3.   Convergence 

• The system for Q-learning is a deterministic MDP.  

• The immediate reward values are bounded. There is an upper limit. 

Q-Table is a lookup table used to calculate the maximum expected future 

rewards for action at each state. This table will help in achieving the best 

action at each state. 
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• The agent selects actions in such a fashion that it visits every possible state-
action pair infinitely often. 

• The conditions are also restrictive in that they require the agent to visit every 
distinct state-action transition infinitely often.  

• The table entry with the largest error must have its error reduced by a factor of γ 
whenever it is updated.  

• The reason is that its new value depends only in part on error-prone Q estimates, 
with the remainder depending on the error-free observed immediate reward r. 

• The agent in state s to select the action at that maximizes Q̂ (s, a) hereby 
exploiting its current approximation Q. 

• This has a chance to over commit to actions that are found during early training 
to have high Q values, while failing to explore other actions that have even 
higher values. Thus the update may sometimes be stuck in local maxima. 

• So, a probabilistic approach is applied: Actions with higher Q values are 
assigned higher probabilities, but every action is assigned a nonzero probability. 

P(ais) = EEA

k AQ̂ A(s,E ai)

∑j k AQ̂ A(s, aj)E

 

• Larger values of k will assign higher probabilities to actions with above average 
Q, causing the agent to exploit what it has learned and seek actions it believes 
will maximize its reward. 

• Smaller values of k will allow higher probabilities for other actions, leading the 
agent to explore actions that do not currently have high Q values.  

• Sometimes, k is varied with the number of iterations so that the agent favors 
exploration during early stages of learning, then gradually shifts toward a 
strategy of exploitation. 

5.14.4.   Sequence Update in Q Learning 

• Q learning need not train on optimal action sequences in order to converge to 
the optimal policy.  
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• It can learn the Q function and the optimal policy while training from actions 
chosen completely at random at each step, as long as the resulting training 
sequence visits every state-action transition infinitely often.  

• Changing the sequence of training example transitions in order to improve 
training efficiency without endangering final convergence. 

• For each training episode, the agent is placed in a random initial state and is 
allowed to perform actions and to update its Q table until it reaches the 
absorbing goal state.  

• A new training episode begins by removing the agent from the goal state and 
placing it at a new random initial state.  

• The initial values of the table from zero will be changed to the final transition 
into the goal state.  

• If the agent happens to follow the same sequence of actions from the same 
random initial state in its second full episode, then a second table entry would 
be made nonzero, and so on.  

• When identical episodes are run in this fashion, the frontier of nonzero Q values 
will creep backward from the goal state at the rate of one new state-action 
transition per episode.  

• Considering reverse chronological order for each episode, then each updates 
will also appear in reverse order.  

• This training process will clearly converge in fewer iterations, although it 
requires that the agent use more memory to store the entire episode before 
beginning the training for that episode. 

• To improve the convergence rate, store the past state-action transitions, along 
with the immediate reward that was received, and retrain on them periodically.  

• The degree of replaying old transitions versus obtain new ones from the 
environment depends on the relative costs of these two operations in the specific 
problem domain.  

• This difference can be very significant given that Q learning can often require 
thousands of training iterations to converge. 
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5.15.    TEMPORAL DIFFERENCE LEARNING 

 

 

 

 

 

• The prediction at any given time step is updated to bring it closer to the 
prediction of the same quantity at the next time step. 

• It is a supervised learning process in which the training signal for a prediction is 
a future prediction.  

• These algorithms are used in reinforcement learning to predict a measure of the 
total amount of reward expected over the future, but they can be used to predict 
other quantities as well.  

• Q learning can be considered as a special case of a general class of temporal 
difference algorithms that learn by reducing discrepancies between estimates 
made by the agent at different times. 

• The rule that assures convergence in Q-learning is: 

AQ̂E

An (s, a) ← (1 – αn) AQ̂E

An – 1 (s, a) + αn[r  + γ Amax
a′ E

A AQ̂E

An – 1 (s′, a′)] 

Where 

αn = A

1
1 + visitsn (s, a) E

 

Visits(s, a)- total number of times this state-action pair has been visited up to 
and including the nth iteration. 

α-learning rate that takes any non zero value between 0 and 1. 

• The above equation reduces the difference between the estimated Q values of a 
state and its immediate successor. Same could be used to reduce discrepancies 
between this state and more distant descendants or ancestors. 

• Consider the notion of calculating training values of Q̂ (st, at) in terms of  
Q̂ (st+1, at+1). Q(1)(st, at)be the training value found with one look ahead step. 

Temporal difference learning is an approach to learning how to predict a 
quantity that depends on future values of a given signal. Its uses changes, or 
differences, in predictions over successive time steps to drive the learning 
process. 
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Q(1) (st, at) ≡ rt + γ Amaxa E

A AQ̂E

A (st + 1, a) 

• Alternatively, the same value can also be computed two steps ahead. 

Q(2) (st, at) ≡ rt + γ r1 + 1 + γ2 Amaxa E

A AQ̂E

A (st + 2, a) 

• Extending this,  

Q(n) (st, at) ≡ rt + γ r1 + 1 + ….. + γ(n – 1) rt + n – 1 + γn Amaxa E

A AQ̂E

A (st + n, a) 

• When a constant value for γ is used, 0 ≤ γ < 1, the equation becomes, 
Qλ (st, at) ≡ (1 – λ) [Q(1) (st, at) + λQ(2) (st, at) + λ2 Q(3) (st, at) + ….] 

• The recursive version of the same is given as, 

Qλ (st, at) ≡ rt + γ [(1 – λ) Amaxa E

A AQ̂E

A(st, at) + λQλ (st + 1, at + 1)] 



 

 

SUMMARY OF NOTATION 

(a ,b]: Brackets are the form [ , ] , ( ,and) are used to represent intervals, where 
square brackets represent intervals including the boundary and round parentheses 
represent intervals excluding the boundary. 

For example, (1,3] represent the interval 1 < x ≤ 3. 
∑n

i = 1 xi: The sum x1 + x2 + … + 

Πn
i = 1: The product x1, x2 ….. xn 

˫: The symbol for logical entailment. For example, A ˫ B denotes that B follows 
deductively from A. 
>g: The symbol for the more general than relation. For example, hj >g hj denotes the 
hypothesis hi is more general than hj. 
argmax

x ∈ (1, 2, – 3)
 f(x): The value of x that maximizes f(x). For example,  

argmax
x ∈ (1, 2, – 3)

 x2  = – 3 

f̂ (x) A function that approximates the function f(x). 

δ: In PAC-learning, a bound on the probability of failure. In artificial neural network 
learning, the error term associated with a single unit output. 

∈: A bound on the error of a hypothesis (in PAC-learning). 

ŋ: The learning  rate in neural network and the related learning methods. 

µ: The mean of a probability distribution. 

∇E(w→) The gradient of E with respect to the vector w→. 

C: Class of possible target function. 

D: The training data. 

D: A probability distribution over the instance space. 

E[x]: The expected value of x. 

E(w→): The sum of squared errors of an artificial neural network whose weights are 
given by the vector w→. 

Error: The error in the discrete valued hypothesis or prediction. 
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H: Hypothesis space. 

h(x): The prediction produced by hypothesis h for instance x. 

P(x): The probability (mass) of x. 

Pr(x): The probability (mass) of the event x. 

p(x): The probability density of x. 

Q(s, a): The Q function from reinforcement learning. 

Ɍ: The set of real numbers. 

VC(H): The Vapnik - Chervonenkis dimension of the hypothesis space H. 
VSH, D: The Version space; that is, the set of hypothesis from H that are consistent 
with D. 
wji: In artificial neural networks, the weight from node i to node j. 

X: Instance space. 
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